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Abstract

This paper analyzes monetary policy in a behavioral model with potential unanchoring of ex-
pectations. The extent to which expectations are anchored is determined in an adaptive learning
setting by the private sector’s endogenously time-varying learning gain. Within the context of an
otherwise standard macro model with nominal rigidities and natural-rate and cost-push shocks, I
find that optimal policy involves an aggressive interest rate response to any threat of expectations
unanchoring. This stabilizes both inflation expectations and inflation, allowing the central bank to
accommodate inflation fluctuations when expectations are well anchored. Furthermore, I estimate
the model-implied relationship that determines the extent of unanchoring. The data suggest that
the expectation process is nonlinear: expectations exhibit a higher sensitivity to large forecast errors
than to smaller ones.
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1 Introduction

Inflation that runs below its desired level can lead to an unwelcome fall in longer-term
inflation expectations, which, in turn, can pull actual inflation even lower, resulting in an
adverse cycle of ever-lower inflation and inflation expectations. [...] Well-anchored inflation
expectations are critical[.]
Jerome Powell, Chairman of the Federal Reserve1

(Emphases added.)

There is broad consensus among policymakers that anchoring inflation expectations is central to
the modern conduct of monetary policy. As Powell emphasizes, policymakers think of expectations
as anchored when long-run expectations do not fluctuate systematically with short-run inflation sur-
prises. If long-run expectations did respond to short-term inflation surprises, policymakers fear this
would result in an adverse cycle of self-enforcing movements in expectations.

This paper studies the conduct of monetary policy in a New Keynesian model where the degree
of expectations anchoring responds endogenously to economic conditions. The main contribution
is providing the first theory of monetary policy when expectations can exhibit varying degrees of
unanchoring. I propose a novel, quantitatively realistic model of expectation formation which captures
the time-varying sensitivity of long-run expectations to short-run conditions. I take the model to the
data to quantify my novel anchoring mechanism, and use it to characterize optimal policy analytically
and numerically.

In order to provide a convincing analysis of optimal policy, I need a qualitatively and quantita-
tively realistic model of expectation formation. To this end, I build on new work by Carvalho et al.
(2019), who model the anchoring of expectations as a discrete gain function that determines whether
agents learn about long-run inflation using a small or large weight on past expectations errors. My
methodological contribution is to extend this work along two dimensions. First, I embed an anchor-
ing model of expectation formation in a general equilibrium New Keynesian model, allowing me to
formally consider the monetary policy problem. Second, I use a continuous gain function, capturing
the time-varying degrees of unanchoring in the data.

Fig. 1 provides some preliminary evidence that a model of a smoothly varying gain function may
be appropriate. It shows the regression coefficient of a rolling window regression of long-run inflation
expectations on short-run forecast errors. Letting π̄it denote the 10-year inflation expectation of fore-
caster i from the Survey of Professional Forecasters (SPF), and f it|t−1 ≡ πt − Eit−1 πt denote forecaster
i’s one-year ahead forecast error, I run

∆π̄it =βw0 + βw1 f
i
t|t−1 + εit, (1)

where w indexes windows of 20 quarters. Fig. 1 plots the time series of the estimated coefficient β̂w1 ,
along with 90% and 95% confidence intervals.2

1“New Economic Challenges and the Fed’s Monetary Policy Review,” August 27, 2020, Jackson Hole.
2Appendix A presents robustness checks. Appendix B discusses alternative measures of long-run inflation expectations.
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Figure 1: Time series of responsiveness of long-run inflation expectations to inflation surprises

As seen on Fig. 1, the relationship between 10-year inflation expectations and one-year surprises,
β̂w1 , is time-varying. Up to about 2005, β̂w1 is positive and significant, with varying magnitude. Between
2005 and 2010, by contrast, it is not significantly different from zero. In this period, then, long-run
expectations were unresponsive to short-run conditions. Around 2010, this changed once more. A
significantly positive β̂w1 since 2010 indicates that on several occasions in the last ten years, short-run
inflation surprises were passed through to long-run expectations.

As an empirical contribution, I bring my smooth gain function to the data to explore the functional
form describing the anchoring of expectations. Calibrating the parameters of the New Keynesian core
of my model, I employ a simulated method of moments estimation strategy (Duffie and Singleton
(1990), Lee and Ingram (1991), Smith (1993)) to back out a piecewise linear approximation to the true
functional form in the data. The estimation results show that my novel gain function has several
reasonable properties. First, I estimate an implied gain time series with a median of 0.098, very close
to the values obtained by Milani (2014) and Carvalho et al. (2019) (0.082 and 0.145 respectively). This
number means that agents in the model rely only on the 10 most recent quarters of data when updating
their long-run expectations. Most importantly, the expectations process is nonlinear: larger forecast
errors in absolute value lead to a higher sensitivity of long-run expectations. In line with other studies,
like Hebden et al. (2020), I also find that a forecast error of a particular size leads to higher gains if its
sign is negative than if it is positive. In other words, negative inflation surprises unanchor expectations
more than same-sized positive mistakes.

Having calibrated the model to the data, and establishing that it provides a realistic description
of expectations, I perform my analysis of policy in the model in three stages. First, I present an an-
alytical characterization of the Ramsey problem of the monetary authority. I demonstrate that the
first-order condition of the Ramsey problem is a target criterion for the policymaker. The target crite-
rion prescribes that the central bank should smooth out the effects of shocks by taking advantage of
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the current and future expected degree of unanchoring.
Second, I solve the optimality conditions of the Ramsey problem numerically. Because the endoge-

nous gain function renders the model nonlinear, I rely on global methods to obtain the optimal policy
function. Like the degree of unanchoring, the optimal interest-rate setting is time-varying. Since the in-
terest rate responds to movements in long-run expectations, the monetary authority acts aggressively
when expectations unanchor. When expectations are well-anchored, by contrast, the central bank ac-
commodates fluctuations in inflation because in this case, long-run expectations do not respond to
short-run conditions.

Third, I consider the class of simple, time-invariant Taylor rules that constitute the most common
specification of monetary policy in practice. I solve for the optimal response coefficient of the interest
rate to inflation numerically in the case of both the anchoring and the rational expectations versions
of my model. It turns out that the central bank finds it optimal to respond less to inflation under
anchoring than under rational expectations. The reason is that positive feedback between inflation
expectations, interest-rate expectations and inflation induces too high volatility in response to aggres-
sive interest rate movements. Moreover, although the Taylor rule is not fully optimal in the model,
an optimally chosen inflation coefficient does a good job in eliminating most of the volatility coming
from unanchored expectations.

The model I use to study the interaction between monetary policy and anchoring is a behavioral
version of the standard New Keynesian (NK) model of the type widely used for monetary policy
analysis. Monetary policy in the rational expectations (RE) version of this model has been studied
extensively, for example in Clarida et al. (1999) or Woodford (2003), whose exposition I follow. The
formulation of a target criterion to implement optimal policy is in the tradition of Svensson (1999).

The behavioral part of the model is the departure from rational expectations on the part of the pri-
vate sector. Instead, I allow the private sector to form expectations via an adaptive learning scheme,
where the learning gain - the parameter governing the extent to which forecasting rules are updated
- is endogenous. The learning framework represents an extension to the adaptive learning literature
advocated in the book by Evans and Honkapohja (2001). This literature replaces the rational expec-
tations assumption by postulating an ad-hoc forecasting rule, the perceived law of motion (PLM), as
the expectation-formation process. Agents use the PLM to form expectations and update it in every
period using recursive estimation techniques. My contribution to this literature is to study optimal
monetary policy in a learning model with an endogenous gain.

Adaptive learning is an attractive alternative to rational expectations for several reasons. First,
many studies document the ability of adaptive learning models to match empirical properties of both
expectations and macro aggregates. Adaptive learning models imply that forecast errors are corre-
lated with forecast revisions, a feature of expectations documented by Coibion and Gorodnichenko
(2015). In fact, the prediction of adaptive learning models concerning the response of expectations
to shocks exactly aligns with new evidence by Angeletos et al. (2020), suggesting that in response to
shocks, expectations initially underreact, and then overshoot. As for the macro evidence, Milani (2007)
demonstrates that estimated constant gain learning models match the persistence of inflation without
recourse to backward-looking elements in the Phillips curve. Eusepi and Preston (2011) show how a
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calibrated adaptive learning version of the real business cycle (RBC) model outperforms the rational
expectations version. In particular, even with a small gain, the learning model leads to persistent and
hump-shaped responses to iid shocks, resolving the long-standing critique of RBC models of Cogley
and Nason (1993).

Secondly, having an endogenous gain improves the empirical properties of adaptive learning mod-
els further. Milani (2014) documents that endogenous gain models can generate endogenous time-
varying volatility in models without any exogenous time-variance. Additionally, Carvalho et al. (2019)
estimate the evolution of the endogenous gain for the last fifty years in the US. Not only does their
model display excellent out-of-sample forecasting performance in terms of matching long-run expec-
tations, but the estimated gain time series invites a reinterpretation of the Great Inflation as a period
of unanchored expectations.

Thirdly, an extensive experimental literature in the spirit of Anufriev and Hommes (2012) demon-
strates that simple adaptive learning rules provide the best fit among competing models to how indi-
viduals form expectations in controlled lab settings. In fact, the idea that individuals in the economy
do not know the true underlying model and thus rely on simple, estimated heuristics to form ex-
pectations is intuitive from an economic perspective. Economists do not know the true model of the
economy, so why should firms and households? And just like an econometrician estimates statistical
models to form forecasts of relevant variables, it is reasonable to suppose that the private sector does
so too.

My work is also related to the literature attempting to explain features of expectations data using
departures from the full information rational expectations (FIRE) paradigm. This literature consists
of two main lines of attack. The first is questioning the assumption of full information. In this body
of work, information is either not fully or not symmetrically available, or information acquisition is
costly (Mankiw and Reis (2002), Sims (2003), Mackowiak and Wiederholt (2009), Angeletos and Pa-
van (2009)). The second strand of this literature, to which this paper belongs, instead emphasizes that
expectation formation departs from rational expectations. Arguably the leading candidate in this lit-
erature, Bordalo et al. (2018), complements the empirical results of Coibion and Gorodnichenko (2015)
with new evidence to contend that the pattern of over- and underreaction to news is consistent with
diagnostic expectations instead of dispersed information. As opposed to these papers, my objective is
not to find the model that best rationalizes stylized facts of expectations in the data. Instead, my con-
tribution to this literature is to investigate how anchoring, a little-studied feature of the expectations
data, affects the conduct of monetary policy.

Adaptive learning models have been the object of scrutiny in the past, perhaps most prominently
in Sargent (1999). The main interest of Sargent (1999) is exploring whether a story in which the Fed-
eral Reserve learns the natural rate hypothesis adaptively can better match the Great Inflation than
an alternative where the Fed understands that there is no exploitable tradeoff between inflation and
unemployment. My focus is different. Based on the reduced-form empirical evidence of Fig. 1, I enter-
tain an anchoring expectation formation on the part of the private sector and ask what the implications
for optimal monetary policy are.

The paper is structured as follows. Section 2 introduces the model. Section 3 describes the learn-
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ing framework and spells out the anchoring mechanism. Section 4 estimates the anchoring function.
Section 5 presents the results in three parts. First, Section 5.1 discusses an analytical characterization
of the Ramsey policy. Second, Section 5.2 solves for the interest rate sequence that implements the
optimal Ramsey allocation using global methods. Third, Section 5.3 investigates the optimal choice of
response coefficients if monetary policy is restricted to follow a Taylor rule. Section 6 concludes.

2 The model

Apart from expectation formation, the model is a standard New Keynesian (NK) model with nominal
frictions à la Calvo (1983). The advantage of having a standard NK backbone to the model is that
one can neatly isolate the way the anchoring mechanism alters the behavior of the model. Since the
mechanics of the rational expectations version of this model are well understood, I only lay out the
model briefly and pinpoint the places where the assumption of nonrational expectations matters.3

2.1 Households

The representative household is infinitely-lived and maximizes expected discounted lifetime utility
from consumption net of the disutility of supplying labor hours:

Êit
∞∑
T=t

βT−t
[
U(CiT )−

∫ 1

0
v(hiT (j))dj

]
. (2)

In the above, the only non-standard element is the expectations operator, Êi. As detailed in Section
3, this operator captures non-rational expectations and is assumed to satisfy the law of iteration ex-
pectations, so that ÊitÊ

i
t+1 = Êit. The remaining elements are familiar from the rational expectations

version of the NK model. U(·) and v(·) denote the utility of consumption and disutility of labor, re-
spectively, and β is the discount factor of the household. I am using standard CRRA utility of the
form U(ct) =

c1−σt
1−σ . hit(j) denotes the supply of labor hours of household i at time t to the production

of good j, and the household participates in the production of all goods j. Similarly, household i’s
consumption bundle at time t, Cit , is a Dixit-Stiglitz composite of all goods in the economy:

Cit =

[ ∫ 1

0
cit(j)

θ−1
θ dj

] θ
θ−1

, (3)

where θ > 1 is the elasticity of substitution between the varieties of consumption goods. Denoting by
pt(j) the time-t price of good j, the aggregate price level in the economy can then be written as

Pt =

[ ∫ 1

0
pt(j)

1−θdj

] 1
θ−1

. (4)

3For more details on the NK model, see Woodford (2003).
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The budget constraint of household i is given by

Bi
t ≤ (1 + it−1)Bi

t−1 +

∫ 1

0
wt(j)h

i
t(j) + Πi

t(j)dj − Tt − PtCit , (5)

where Πi
t(j) denotes profits from firm j remitted to household i, Tt taxes, and Bi

t the riskless bond
purchases at time t.4

The only difference to the standard New Keynesian model is the expectations operator, Êi. This is
the subjective expectations operator that differs from its rational expectations counterpart, E, in that
it does not encompass knowledge of the model. In particular, households have no knowledge of the
fact that they are identical. By extension, they also do not internalize that they hold identical beliefs
about the evolution of the economy. This implies that while the modeler can suppress the index i,
understanding that Êi = Êj = Ê, households cannot do so. As we will see in Section 2.3, this has
implications for their forecasting behavior and will result in decision rules that differ from those of the
rational expectations version of the model.

2.2 Firms

Firms are monopolistically competitive producers of the differentiated varieties yt(j). The production
technology of firm j is yt(j) = Atf(ht(j)), whose inverse, f−1(·), signifies the amount of labor input.
Noting that At is the level of technology and that wt(j) is the wage per labor hour, firm j profits at
time t can be written as

Πj
t = pt(j)yt(j)− wt(j)f−1(yt(j)/At). (6)

Firm j’s problem then is to set the price of the variety it produces, pt(j), to maximize the present
discounted value of profit streams

Êjt
∞∑
T=t

αT−tQt,T

[
Πj
t (pt(j))

]
, (7)

subject to the downward-sloping demand curve

yt(j) = Yt

(
pt(j)

Pt

)−θ
, (8)

where
Qt,T = βT−t

PtUc(CT )

PTUc(Ct)
(9)

is the stochastic discount factor from households. Nominal frictions enter the model through the
parameter α in Equation (7). This is the Calvo probability that firm j is not able to adjust its price in a
given period.

4For ease of exposition I have suppressed potential money assets here. This has no bearing on the model implications
since it represents the cashless limit of an economy with explicit money balances.
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Analogously to households, the setup of the production side of the economy is standard up to the
expectation operator. Also here the model-consistent expectations operator E has been replaced by the
subjective expectations operator Êj . This implies that firms, like households, do not know the model
equations, nor do they internalize that they are identical. Thus their decision rules, just like those of
the households, will be distinct from their rational expectations counterparts.

2.3 Aggregate laws of motion

The model solution procedure entails deriving first-order conditions, taking a loglinear approximation
around the nonstochastic steady state and imposing market clearing conditions to reduce the system
to two equations, the New Keynesian Phillips curve and IS curve. The presence of subjective expec-
tations, however, implies that firms and households are not aware of the fact that they are identical.
Thus, as Preston (2005) points out, imposing market clearing conditions in the expectations of agents
is inconsistent with the assumed information structure.5

Instead, I prevent firms and households from internalizing market clearing conditions.6 As Preston
(2005) demonstrates, this leads to long-horizon forecasts showing up in firms’ and households’ first-
order conditions. As a consequence, instead of the familiar expressions, the IS and Phillips curves take
the following form:

xt = −σit + Êt
∞∑
T=t

βT−t
(
(1− β)xT+1 − σ(βiT+1 − πT+1) + σrnT

)
, (10)

πt = κxt + Êt
∞∑
T=t

(αβ)T−t
(
καβxT+1 + (1− α)βπT+1 + uT

)
. (11)

Here xt, πt and it are the log-deviations of the output gap, inflation and the nominal interest rate from
their steady state values, and σ is the intertemporal elasticity of substitution. The variables rnt and ut

are exogenous disturbances representing a natural rate shock and a cost-push shock respectively.
The laws of motion (10) and (11) are obtained by deriving individual firms’ and households’ de-

cision rules, which involve long-horizon expectations, and aggregating across the cross-section. Im-
portantly, agents in the economy have no knowledge of these relations since they do not know that
they are identical and thus are not able to impose market clearing conditions required to arrive at (10)
and (11). Thus, although the evolution of the observables (π, x) is governed by the exogenous state
variables (rn, u) and long-horizon expectations via these two equations, agents in the economy are
unaware of this. As I will spell out more formally in Section 3, it is indeed the equilibrium mapping
between states and jump variables the agents are attempting to learn.

5The target of Preston (2005)’s critique is the Euler-equation approach as exemplified for example by Bullard and Mitra
(2002). This approach involves writing down the loglinearized first-order conditions of the model, and simply replacing the
rational expectations operators with subjective ones. In a separate paper, I demonstrate that the Euler-equation approach is
not only inconsistent on conceptual grounds as Preston (2005) shows, but also delivers substantially different quantitative
dynamics in a simulated New Keynesian model.

6There are several ways of doing this. An alternative to Preston (2005)’s long-horizon approach pursued here is the
shadow price learning framework advocated by Evans and McGough (2009).
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To simplify notation, I gather the exogenous state variables in the vector st and observables in the
vector zt as

st =

r
n
t

īt

ut

 and zt =

πtxt
it

 , (12)

where īt is a shock to the interest rate that only shows up in the model for particular specifications of
monetary policy.7 This allows me to denote long-horizon expectations by

fa,t ≡ Êt
∞∑
T=t

(αβ)T−tzT+1 and fb,t ≡ Êt
∞∑
T=t

(β)T−tzT+1. (13)

As detailed in Appendix D, one can use this notation to reformulate the laws of motion of jump vari-
ables (Equations (10), (11) and (41)) compactly as

zt = Aafa,t +Abfb,t +Asst, (14)

where the matrices Ai, i = {a, b, s} gather coefficients and are given in Appendix D. Assuming that
exogenous variables evolve according to independent AR(1) processes, I write the state transition
matrix equation as

st = hst−1 + εt with εt ∼ N (0,Σ), (15)

where h gathers the autoregressive coefficients ρj , εt the Gaussian innovations εjt , and η the standard
deviations σjt , for j = {r, i, u}. Σ = ηη′ is the variance-covariance matrix of disturbances.8

3 Learning with an anchoring mechanism

The informational assumption of the model is that agents do not know the equilibrium mapping be-
tween states and jumps in the model. Without knowing the form of the observation equation, then,
they are not able to form rational expectations forecasts. Instead, agents postulate an ad-hoc fore-
casting relationship between states and jumps and seek to refine it in light of incoming data. In other
words, they act like an econometrician: they estimate a simple statistical model and constantly attempt
to improve their model as new data arrive.

3.1 Perceived law of motion

I assume agents consider a forecasting model for the endogenous variables of the form

Êtzt+1 = at−1 + bt−1st, (16)
7For generality, I treat the exogenous state vector as three-dimensional throughout the paper, even when the monetary

policy shock is absent.
8For the sake of conciseness, I have suppressed the expressions for these in the main text. See Appendix D.
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where a and b are estimated coefficients of dimensions 3× 1 and 3× 3 respectively. This perceived law
of motion (PLM) reflects the assumption that agents forecast jumps using a linear function of current
states and a constant, with last period’s estimated coefficients. Summarizing the estimated coefficients
as φt−1 ≡

[
at−1 bt−1

]
, here 3× 4, I can rewrite Equation (16) as

Êtzt+1 = φt−1

[
1

st

]
. (17)

I also assume that
Êtφt+k = φt ∀ k ≥ 0. (18)

This assumption, known in the learning literature as anticipated utility (Kreps (1998)), means that
agents do not internalize that they will update the forecasting rule in the future. Clearly, this poses
a higher level of irrationality than not knowing the model and using statistical techniques to attempt
to learn it. Nevertheless, because it has been demonstrated not to alter the dynamics of the linearized
model (Sargent (1999)), anticipated utility has become a standard assumption in the adaptive learning
literature in order to simplify the algebra.

Since the states st are exogenous, I assume that agents know Equation (15), the equation governing
the evolution of st.9 Then, the PLM together with anticipated utility implies that k-period ahead
forecasts are constructed as

Êtzt+k = at−1 + bt−1h
k−1st ∀k ≥ 1. (19)

The timing assumptions of the model are as follows. In the beginning of period t, the current state
st is realized. Agents then form expectations according to (16) using last period’s estimate φt−1 and
the current state st. Given exogenous states and expectations, today’s jump vector zt is realized. This
allows agents to evaluate the most recent forecast error

ft|t−1 ≡ zt − φt−1

[
1

st−1

]
(20)

to update their forecasting rule. The estimate is updated according to the following recursive least-
squares algorithm:

φt =

(
φ′t−1 + ktR

−1
t

[
1

st−1

]
f ′t|t−1

)′
, (21)

Rt = Rt−1 + kt

([
1

st−1

] [
1 st−1

]
−Rt−1

)
. (22)

Here Rt is the 4× 4 variance-covariance matrix of the regressors and kt is the learning gain, specifying
to what extent the updated estimate loads on the forecast error. Clearly, a high gain implies high

9This is another common simplifying assumption in the adaptive learning literature. In an extension, I relax this as-
sumption and find that it has similar implications as having agents learn the Taylor rule: initial responses to shocks lack
intertemporal expectation effects, but these reemerge as the evolution of state variables is learned.
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loadings and thus strong changes in the estimated coefficients φt. A low gain, by contrast, means that
a given forecast error only has a small effect on φt.

3.2 Endogenous gain as anchoring mechanism

The vast majority of the learning literature specifies the gain either as a constant, ḡ, or decreasing with
time, so that kt = t−1, where t indexes time. Instead, to capture the notion of anchoring, I follow
Carvalho et al. (2019) in allowing the gain to fluctuate in a time-varying way in response to short-run
forecast errors. I use the following endogenous gain specification: I assume the gain evolves as

kt = g(kt−1, ft|t−1), (23)

where g(·) is a smooth function. I refer to g(·) as the anchoring function. Notice that this function
is an extension to the conventional decreasing or constant gain specifications, as it nests both as spe-
cial cases. A decreasing gain implies g(kt−1, ft|t−1) = t−1, while a constant gain g(kt−1, ft|t−1) = ḡ.
Furthermore, in both special cases, g1 = g2 = 0.

By contrast, my novel specification entails the following assumptions on the function g(·):

g1 ≥ 0, (24)

g22 ≥ 0. (25)

Equation (24) says that the current value of the gain depends positively on its past value. In a similar
vein, Equation (25) suggests that g(·) is convex in its second argument. In other words, the gain is
increasing in the absolute value of forecast errors.

The novelty of specifying the evolution of the gain using (23) with the properties in (24) and (25)
is that it offers a time- and state-dependent model of private sector learning. In both of the standard,
exogenous gain schemes the gain is divorced from the current environment. It either decreases de-
terministically (kt = t−1), or is a constant (kt = ḡ). This means that the private sector’s learning is
static and not state-dependent in the sense that a volatile environment results in the same learning
pattern as a stable one. My specification, instead, allows the private sector to learn in a time-varying
and state-dependent way. When high volatility results in large forecast errors in absolute value, the
anchoring function outputs a larger gain than when forecast errors are close to zero. Thus the learn-
ing coefficients at and bt respond more to forecast errors in volatile states of the world than in stable
ones. The time-varying nature of the gain therefore generates periods of well-anchored expectations
(low gain) as well as highly unanchored episodes (high gain). The model thus interprets the gain as a
metric of the extent of unanchoring.

My anchoring mechanism also displays desirable empirical features. First, as demonstrated by Mi-
lani (2014), endogenous gain learning models can match time-varying volatility in the data, a feature
that constant gain learning models cannot account for. More importantly, since at is my model’s ex-
pression for long-run expectations, the fact that the gain is a convex function of forecast errors allows
the model to match the time-varying sensitivity of long-term inflation expectations documented in
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Fig. 1.
I am not the first to postulate an endogenous gain. In fact, Milani (2014)’s estimation is based on

an endogenous gain scheme introduced by Marcet and Nicolini (2003). Furthermore, Carvalho et al.
(2019) are the first to lay out an endogenous gain specification as a model of anchored expectations.
The novelty of my endogenous gain model is that, as opposed to Carvalho et al. (2019), the anchoring
function g(·) is a smooth function. In Carvalho et al. (2019)’s specification, discussed in detail in
Appendix F, g(·) is a discrete function of the endogenous component of forecast errors. In their partial
equilibrium model, firms use a constant gain if the endogenous component of forecast errors exceeds
a given threshold, otherwise they use a decreasing gain.

Assuming instead that g(·) is a smooth function is useful for two reasons. First, since the deriva-
tives of g(·) exist, this formulation allows me to consider the Ramsey problem of the monetary author-
ity. This is thus a necessary condition to be able to study optimal monetary policy in the model, which
is the main contribution of this paper. Second, the smoothness of g(·) renders the size of the gain a
meaningful metric of the degree of unanchoring. By contrast, in Carvalho et al. (2019)’s model, expec-
tations are either fully anchored or unanchored. My model thus provides more flexibility regarding
the extent of unanchoring, in line with the evidence on varying degrees of responsiveness of long-run
expectations to short-run mistakes.

My smooth specification of g(·) also allows me to take the anchoring function to the data. As
discussed in Section 4, I employ a semi-nonparametric approach to back out the functional form of
g(·) from the data. I then use the estimates to calibrate my model to carry out the numerical analysis
of monetary policy.

It is intuitive why the central bank might care whether expectations are anchored or not. When
expectations are strongly unanchored at time t, the private sector believes that the true DGP involves a
different mapping between states and jumps than they previously maintained. Private sector forecasts
will thus drift in the direction of the update, implying that the observables will also shift in the same
direction owing to the law of motion (14). From the perspective of the central bank, stabilization of the
observables therefore implies stabilization of expectations. Indeed, the contribution of this paper is to
analyze formally the nature of the monetary policy problem when expectations are formed using the
anchoring mechanism in Equation (23).

3.3 Actual law of motion

To complete the model, I now use the specifics of the anchoring expectation formation to characterize
the evolution of the jump variables under learning. Using the PLM from Equation (16), I write the
long-horizon expectations in (13) as

fa,t ≡
1

1− αβ
at−1 + bt−1(I3 − αβh)−1st and fb,t ≡

1

1− β
at−1 + bt−1(I3 − βh)−1st. (26)
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Substituting these into the law of motion of observables (Equation (14)) yields the actual law of motion
(ALM):

zt = glt−1

[
1

st

]
, (27)

where gl is a 3 × 4 matrix given in Appendix E. Thus, instead of the state-space solution of the RE
version of the model (Equations (15) and (E.1)), the state-space solution for the learning model is
characterized by the pair of equations (15) and (27), together with the PLM (19), the learning equations
(21) and (22), as well as the anchoring function (23).

3.4 Simplifying assumptions

To simplify the analytical work in Section 5.1, I make two assumptions that I maintain for the rest of
the paper.

Assumption 1. e′iat = 0, i = 2, 3, ∀t and bt = g h ∀t.

Here ei is a 3 × 1 vector of zeros with 1 as its ith element. Assumption 1 amounts to restricting
the intercepts in the forecasts of the output gap and the interest rate and the slope coefficients of all
forecasts to what they would be under rational expectations. This means that instead of learning the
intercept and slope parameters for all three endogenous variables, the private sector only learns the
intercept of the inflation process.

The rationale behind this assumption is that it is the smallest possible deviation from rational
expectations that at the same time has enough flexibility to study the unanchoring of inflation expec-
tations. In particular, since the inflation intercept is learned using my novel anchoring mechanism, the
formulation is able to capture the time-varying sensitivity of long-run inflation expectations to short-
run forecast errors in inflation. In extensions, I relax this assumption and find that it does not change
the qualitative or quantitative implications of the model.

With Assumption 1, the updating equations (21) and (22) simplify to a single equation:

π̄t = π̄t−1 + ktft|t−1, (28)

where, using the notation that b1 ≡ e1b, the k-period-ahead inflation forecast is given by

Êtπt+k = π̄t−1 + bk1st, ∀k ≥ 1. (29)

Lastly, the one-period-ahead forecast error in inflation simplifies to

ft|t−1 = πt −
(
π̄t−1 + b1st

)
. (30)

Assumption 2. g1 = 0.

The interpretation of this assumption on the anchoring function is that the current gain depends
only on forecast errors, not on its own past level. The motivation is to simplify the analytical solution
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of the Ramsey problem in Section 5.1. Appendix I provides a treatment of the Ramsey problem with
the general specification of the anchoring function, relaxing Assumption 2. As seen in the Appendix,
this does not change the mechanics nor the intuition behind the solution of the Ramsey problem.

4 Quantification of learning channel

The numerical analysis of monetary policy requires a functional specification for the anchoring func-
tion g(·) of Equation (23). For this reason, I back out the functional form of g(·) from data. Apart
from its usefulness for numerical analysis, the form of the anchoring function is interesting in its own
right because it describes empirical properties of the anchoring of expectations. In particular, central
bankers may want to know how much forecast errors of a particular sign and magnitude unanchor
expectations.

I carry out the estimation in two steps. I first calibrate the parameters of the underlying New Key-
nesian model. Conditional on these parameter values, I estimate the anchoring function by simulated
method of moments à la Lee and Ingram (1991), Duffie and Singleton (1990) and Smith (1993). I target
the autocovariance structure of the Baxter-King filtered observables of the model and expectations.
The observables are CPI inflation from the Bureau of Labor Statistics (BEA), the output gap and the
federal funds rate from the Board of Governors of the Federal Reserve System.10 For expectations, I
rely on 12-month-ahead CPI inflation forecasts from the Survey of Professional Forecasters (SPF). The
dataset is quarterly and ranges from 1981-Q3 to 2020-Q1. Appendix G contains a detailed description
of the estimation methodology.

4.1 Calibration

For the calibration of the NK backbone of the model, I split the parameters into two subsets. The first
is calibrated using values from the literature, while the second is calibrated to match the moments
outlined above. Tables 1 and 2 show the two subsets of calibrated parameters respectively. As Table
1 depicts, I adopt standard parameters from the literature where possible. In particular, for β, σ and
other parameters underlying κ, the slope of the Phillips curve, I rely on the parameterization of Chari
et al. (2000), advocated in Woodford (2003).

The composite parameter κ is given by κ = (1−α)(1−αβ)
α ζ, where ζ is a measure of strategic comple-

mentarity in price setting. Assuming specific factor markets, constant desired markups with respect
to output levels and no intermediate inputs, ζ = ω+σ−1

1+ωθ . Here θ is the price elasticity of demand and
ω is the elasticity of the marginal cost function with respect to output. Chari et al. (2000)’s calibra-
tion involves θ = 10, σ = 1, ω = 1.25, β = 0.99, so that together with my choice of α, κ is pinned
down. Note that I lower β slightly (0.98 instead of Chari et al. (2000)’s 0.99). This allows the model
to better match the autocovariance structure of the output gap because it lowers the pass-through of
long-horizon expectations in the IS curve.

10The output gap measure is constructed as the difference between real GDP from the Bureau of Economic Analysis (BEA)
and the Congressional Budget Office’s (CBO) estimate of real potential output.
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Table 1: Parameters calibrated from literature

β 0.98 stochastic discount factor
σ 1 intertemporal elasticity of substitution
α 0.5 Calvo probability of not adjusting prices
κ 0.0842 slope of the Phillips curve
ψπ 1.5 coefficient of inflation in Taylor rule*
ḡ 0.145 initial value of the gain

Table 2: Parameters set to match data moments

ψx 0.3 coefficient of the output gap in Taylor rule*
σr 0.01 standard deviation, natural rate shock
σi 0.01 standard deviation, monetary policy shock*
σu 0.5 standard deviation, cost-push shock

*Parameters with an asterisk refer to sections of the paper where a Taylor rule is in effect.

The probability of not adjusting prices, α, is set to match an average price duration of two quarters,
which is slightly below the numbers found in empirical studies.11 In the literature, the average price
duration is a little above 7 months. My number for α corresponds to 6 months. I choose the lower end
of this spectrum in order to allow the learning mechanism, and not price stickiness, to drive the bulk
of the model’s persistence.

To simplify the numerical analysis as well as interpretation, I restrict the shocks to be iid. The
volatilities of the disturbances and, where applicable, the output-coefficient of the Taylor rule, are set
to match the above-mentioned moments. As shown in Table 2, this implies standard deviations of
0.01 for the natural rate and monetary policy shock and 0.5 for the cost-push shock. In sections of the
paper where I assume a Taylor rule, the moment-matching exercise results in a 0.3 coefficient on the
output gap. The last parameter of the New Keynesian core is the inflation coefficient of the Taylor
rule, ψπ. Unless otherwise specified, I set ψπ to 1.5, the value recommended by Taylor (1993). Note
that the asterisks in Tables 1 and 2 demarcate parameters that pertain to the Taylor rule and thus only
to sections of the paper which assume that a Taylor rule is in effect.

I initialize the value of the gain at ḡ = 0.145. This is Carvalho et al. (2019)’s estimate for the case of
unanchored expectations in their discrete anchoring function model. In the case of a discrete anchoring
function, as in Carvalho et al. (2019), this parameter has important implications for model dynamics
because by construction, the gain takes on this value very frequently. However, since my specification
for g(·) is smooth, ḡ does not have a strong bearing on model dynamics.

4.2 Estimation

In inferring the functional form of the anchoring function g(·), I proceed as follows. First, since the
analysis in Section 5 relies on Assumptions 1 and 2, I similarly impose these on the estimation. In

11On the lower end of the empirical values for α, Bils and Klenow (2004) find a mean duration of 4.3 months and Klenow
and Malin (2010) 6.9 months. Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) agree on between 7-9 months,
while Eichenbaum et al. (2011)’s number is 10.6 months.
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other words, I seek to back out the functional form of the relationship between the size of the gain and
forecast errors in inflation, kt = g(ft|t−1).

To be as close as possible to a non-parametric estimate of g(·), while at the same time preserve the
shape of the function, I employ a piecewise linear approximation of the form:

g(ft|t−1) =
∑
i

γibi(ft|t−1). (31)

Here bi(·) is a piecewise linear basis and γ is a vector of approximating coefficients. The index i

refers to the breakpoints of the piecewise linear approximation. As explained above, I estimate γ by
simulated method of moments, targeting the autocovariance structure of the observables of the model
and expectations.

Figure 2: Estimated α̂: kt as a function of ft|t−1

Estimates for 5 knots, cross-section of size N = 1000

Fig. 2 presents the estimated coefficients: γ̂ = (0.82; 0.61; 0; 0.33; 0.45). The circles indicate the
nodes of the piecewise linear approximation. The interpretation of the elements of γ̂ is the value of
the gain the private sector chooses when it observes a forecast error of a particular magnitude. For
example, a forecast error of -4 pp in inflation is associated with a gain of 0.82.

Before interpreting the estimated anchoring function, it is helpful to work out what amounts to a
large gain. In particular, since the gain is the model’s metric of the extent of unanchoring, from what
size of the gain should one consider expectations to be significantly unanchored? The consensus in the
literature on estimating learning gains is that if the true model is one with constant gain learning, then
the gain lies between 0.01-0.05. On the higher end of the empirical estimates, Branch and Evans (2006)
obtain a constant gain on inflation of 0.062. Milani (2007) finds 0.0183. The estimates of the maximal
value for endogenous gains lie somewhat higher, at 0.082 in Milani (2014) and at 0.145 in Carvalho
et al. (2019). Calibrated models tend to use the consensus values between 0.01-0.05, with the number

16



0.05 having attained particular prominence. However, Eusepi and Preston (2011) find that the value
of 0.002 is sufficient to significantly alter the dynamic behavior of a standard RBC model.

An intuitive interpretation of the gain is that its inverse gives the number of past observations
the private sector uses to form its current forecasts. Eusepi and Preston (2011)’s number, 0.002, thus
implies that firms and households rely on the last 125 years of data. By contrast, the consensus number
of 0.05 translates to using five years of data.

Seen from both of these perspectives, a gain of 0.05 corresponds to a sizable amount of unanchor-
ing. With this benchmark number in mind, the message of Fig. 2 seems stark: the estimated coefficients
are very large. The highest gain value in my estimation, 0.82, can be interpreted as seeing forecast er-
rors of 4 pp in absolute value prompting the private sector to discount any observations older than
about 5 months. That is a very short time.

Figure 3: Forecast errors and implied gain in the SPF data

(a) (b)

Forecast errors are in annualized percentage points.

Presumably, such large forecast errors are rare, however. In fact, Fig. 3 confirms that this is indeed
the case in the SPF data since the 1990s. As shown on the left panel, in this time period, forecast errors
were always below 4 percentage points in absolute value, the largest being an error of -3.31 pp. The
right panel depicts the time series for the gain implied by the model and the estimated γ̂. The mean
and median values of the gain, 0.121 and 0.098 respectively, suggest that there is substantial sensitivity
of long-run expectations to forecast errors overall in the data.

Clearly, the main feature of the gain is that it is time-varying. Periods of near-zero values are
frequently followed by high values around or above 0.1. The negative inflation surprises brought on
by the Great Recession and the Covid-19 crisis unsurprisingly result in very large gains, almost 0.7 and
around 0.35 respectively, yielding highly unanchored expectations. More surprising is the fact that the
decade-long boom between 2010 and 2020 also involves a very unanchored episode. In fact, the gain
in 2015 is above 0.4, exceeding its 2020 value. Moreover, following 2015, the gain remained elevated
for almost five years. By contrast, after the Great Recession, expectations recovered fast and by 2010
looked very well-anchored.
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On the one hand, this suggests that exogenous shocks such, for example shocks to credit or to oil
prices, have similar effects as the Fed missing its inflation target. On the other hand, a potentially
more alarming implication is that failing to get inflation back up to target seems to go hand-in-hand
with persistently unanchored expectations. Thus central bank misses may result in unanchoring that
is more difficult to combat than that following exogenous shocks.

The three sizable unanchoring episodes since 2008 may also stem from a change in the pattern of
forecast errors. Up to 2008, most forecast errors were positive and small in magnitude. This reversed
in 2008. Not only were most post-2008 forecast errors negative, but they were also larger than the
positive surprises. This connects with the finding that unanchoring is asymmetric. Notice that, as
seen on Fig. 2, negative inflation surprises raise the gain about twice as much as positive ones do.
Consistent with the findings of Hebden et al. (2020), this indicates that long-run expectations are more
sensitive to negative than to positive surprises. This implies, then, that not only is the magnitude
of forecast errors after 2008 responsible for the spikes in the gain, but also that inflation consistently
turned out to be lower than what the public had expected.

5 Monetary policy and anchoring

This section sets up and solves the optimal monetary policy problem in the model with the anchor-
ing expectation formation. In Section 5.1, I begin by analyzing the Ramsey problem of determining
optimal paths for the endogenous variables that policy seeks to bring about. While the anchoring
mechanism introduces substantial nonlinearity into the model, it is possible to derive analytically an
optimal target criterion for the policymaker to follow. As we shall see, the optimal rule prescribes
for monetary policy to act conditionally on the stance of expectations, and will thus be time-varying
and state-dependent. In particular, whether expectations are anchored or not matters for the extent to
which there is a tradeoff between inflation and output gap stabilization, and also for the volatility cost
of getting expectations anchored.

I then turn to the question of how to implement optimal policy. Section 5.2 uses global methods to
solve for the interest rate sequence that implements the target criterion. I then discuss the properties
of the optimal interest rate policy and why it is successful in stabilizing both inflation expectations and
inflation.

The optimal interest rate policy will thus be a nonlinear function of all the states in the model -
a complicated object to compute. In practice, however, monetary policy is most commonly modeled
using time-invariant rules like the Taylor rule that are simple to compute and to communicate to
the public. In Section 5.3, I therefore restrict attention to Taylor-type feedback rules for the interest
rate. I solve for the optimal Taylor-rule coefficient on inflation numerically and investigate how this
choice affects the anchoring mechanism. As I expand upon further in Section 5.3, a Taylor rule with
given coefficients involves higher fluctuations in the anchoring model than under rational expectations
because it does not allow the central bank to respond to long-run expectations. At the same time,
it involves responding to inflation even in periods when expectations are anchored, causing excess
volatility. For this reason, the optimal Taylor-rule inflation-coefficient is lower than under rational
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expectations.

5.1 The Ramsey policy under anchoring

I assume the monetary authority seeks to maximize welfare of the representative household under
commitment. As shown in Woodford (2003), a second-oder Taylor approximation of household utility
delivers a central bank loss function of the form

LCB = Et
∞∑
T=t

{(πT − π∗)2 + λx(xT − x∗)2}, (32)

where λx is the weight the central bank assigns to stabilizing the output gap. In the rational expec-
tations New Keynesian model, λx is a function of deep parameters: λx = κ

θ . Just as under rational
expectations, one can show that it is optimal to set the central bank’s targets, π∗ and x∗, to zero. The
central bank’s problem, then, is to determine paths for inflation, the output gap and the interest rate
that minimize the loss in Equation (32), subject to the model equations (10) and (11), as well as the
PLM (19), the learning equations (21) and (22), and the anchoring function (23). The full statement of
the Ramsey problem under Assumptions 1 and 2 is as follows:

min
{πt,xt,it,π̄t−1,kt}∞t=t0

Et0
∞∑
t=t0

βt−t0(π2
t + λxx

2
t ) s.t.

xt = −σit + Êt
∞∑
T=t

βT−t
(
(1− β)xT+1 − σ(βiT+1 − πT+1) + σrnT

)
,

πt = κxt + Êt
∞∑
T=t

(αβ)T−t
(
καβxT+1 + (1− α)βπT+1 + uT

)
,

Êtπt+k = π̄t−1 + bk1st ∀k ≥ 1,

π̄t = π̄t−1 + ktft|t−1,

kt = g(ft|t−1). (33)

5.1.1 Optimal Ramsey policy as a target criterion

As foreshadowed above, the nonlinearity of the model due to the anchoring function prevents a full
analytical solution to the Ramsey problem. Therefore I now characterize the first-order conditions of
the problem analytically, and proceed in Section 5.2 to solve the full problem numerically. The details
of the derivations are given in Appendix H, which also illustrates how the endogeneity of the gain
introduces nonlinearity into the model.

The solution of the Ramsey problem is stated in the following proposition.

Proposition 1. Target criterion in the anchoring model
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The targeting rule in the simplified learning model with anchoring is given by

πt = −λx
κ
xt +

λx
κ

(1− α)β

1− αβ

(
kt + ft|t−1gπ,t

)(
Et
∞∑
i=1

xt+i

i−1∏
j=0

(1− kt+1+j − ft+j|t+j−1gπ̄,t+j)

)
. (34)

Proved in Appendix H. For a general target criterion without Assumption 2, see Appendix I.

Here, Et is the central bank’s expectation. The notation reflects the assumption that the central bank
has model-consistent expectations and observes the private sector’s expectations. This assumption,
which Gaspar et al. (2010) refer to as “sophisticated central banking,” is quite strong. In practice, it is
likely that the central bank’s measure of private sector expectations is noisy at best. Nevertheless, it is
a useful case that can serve as a benchmark for future research.

The interpretation of Equation (34) is that the intratemporal tradeoff between inflation and the
output gap due to cost-push shocks is complemented by two intertemporal tradeoffs: one due to learn-
ing in general, and one due to anchoring in particular. The first intertemporal effect comes from the
current level of the gain, kt, which captures how far learning is from converging to rational expec-
tations. The second intertemporal tradeoff is manifest in the derivative of the anchoring function
today, gπ,t, as well as in all expected levels and changes in the gain in the future in the expression
(1− kt+1+j − ft+j|t+j−1gπ̄,t+j) in the second bracket on the right-hand side. These expressions say that
the presence of anchoring qualify the first intertemporal tradeoff because now the degree and direction
in which the gain changes today and is expected to change in the future matter too. In other words,
the central bank needs to consider whether its chosen interest rate sequence contributes to anchoring
expectations in future periods, or whether it actually serves to unanchor them.

Let me investigate these channels in isolation. To see exactly what the role of anchoring is in the
target criterion, consider first the special case of exogenous gain adaptive learning, for simplicity with
a constant gain specification. In this case the anchoring function and the forecast error are irrelevant
(since gi = 0, i = π, π̄) and (34) boils down to

πt = −λx
κ
xt +

λx
κ

(1− α)β

1− αβ
k

( ∞∑
i=1

xt+i(1− k)i
)
, (35)

which is the analogue of Gaspar et al. (2010)’s Equation (24).12 This result, found also by Molnár
and Santoro (2014), suggests that already the presence of learning by itself is responsible for the first
intertemporal tradeoff between inflation and output gap stabilization. The fact that the central bank
now has future output gaps as a margin of adjustment means that it does not have to face the full
tradeoff in the current period. Learning allows the central bank to improve the current output gap
without sacrificing inflation stability today; however, this results in a worsened tradeoff in the future.
In other words, adaptive learning by itself allows the central bank to postpone the current tradeoff to
later periods.

Intuitively, this happens because adaptive expectations are slow in converging to rational expecta-

12Gaspar et al. (2010) provide a parsimonious summary of Molnár and Santoro (2014).
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tions. In the transition, the private sector’s expectations do not adjust to fully internalize the intratem-
poral tradeoff. This gives the monetary authority room to transfer the tradeoff to the future.

Contrasting Equations (35) and (34) highlights the role of my novel anchoring channel. With an-
choring, the extent to which policy can transfer the intratemporal tradeoff to future periods depends
not only on the stance of the learning process, as in (35), but also on whether expectations are an-
chored, and in which direction they are moving. In fact, not only the current stance and change of
anchoring matters, but also all expected future levels and changes.

Anchoring, however, complicates the possibility of transferring today’s tradeoff to the future. One
can see this in the fact that forecast errors and the derivatives of the anchoring function are able to flip
the sign of the second term in (34). This means that anchoring can alleviate or worsen the intertemporal
tradeoff. To see the intuition, consider the equation system of first-order conditions from solving the
Ramsey problem. While the full system is presented in Appendix H, let us focus solely on Equation
(H.8), the equation governing the dynamics of observables in the model:

2πt = −2
λx
κ
xt + ϕ5,tkt + ϕ6,tgπ,t. (36)

The Lagrange multipliers ϕ5 ≥ 0 and ϕ6 ≥ 0 are the multipliers of the updating equation (21) and
the anchoring function respectively. This equation, upon substitution of the solutions for the two
multipliers, yields the target criterion. It is therefore easy to read off the intuition at a glance. First,
since ϕ5,tkt > 0, one immediately obtains the above-discussed conclusion that as long as the adaptive
learning equation is a constraint to the policymaker (ϕ5,t > 0), the central bank has more room to
transfer the contemporaneous tradeoff between inflation and the output gap to the future.13

However, whether the anchoring equation alleviates or exacerbates the inflation-output gap trade-
off depends on the sign of gπ,t. If the derivative is positive, the effect is the same as above, and the
central bank has more leeway to postpone the tradeoff to the future. By contrast, if the derivative is
negative, that is expectations are becoming anchored, the intratemporal tradeoff is worsened.

Why do unanchored expectations give the central bank the possibility to postpone its current
inflation-output gap tradeoff? The reason is that when expectations become unanchored, the learning
process is restarted. A not-yet converged learning process implies, as discussed above, that postpon-
ing the tradeoff is possible. Restarting the convergence process thus unlocks this possibility.

This seems to suggest that from a smoothing standpoint, the central bank should prefer to have
unanchored expectations. As will be shown in Sections 5.2-5.3, volatility considerations will suggest
otherwise. But in fact, even the smoothing viewpoint involves some ambiguity on whether expecta-
tions should be anchored from the perspective of the central bank. Clearly, the central bank prefers to
face a learning process that on the one hand has not yet converged, and on the other is converging only
slowly. A high gain under unanchored expectations implies both a sizable distance from convergence

13Strictly speaking, ϕ5 and ϕ6 are never zero in this model. The reason is that exogenous disturbances induce unfore-
castable variation throughout the lifetime of the economy. Thus, at any point in time, forecast errors can emerge that will
unanchor expectations, restarting the learning process. This is in stark contrast with Carvalho et al. (2019), where the gain
only depends on the endogenous component of the forecast error. Therefore, in their model, absent regime switches, expec-
tations can never become unanchored once learning has converged.
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as well as faster learning and thus faster convergence. Therefore, ideally the central bank would like
to have expectations anchored but the gain far from zero; a contradiction. Once the gain approaches
zero, only unanchored expectations can raise it again to restart the learning process. But once the gain
is large, the only way to slow down learning is to anchor expectations, that is, to lower the gain.

5.1.2 Time-consistence of optimal plans under adaptive learning

Now simplify the target criterion further, assuming that learning has converged, kt = gπ = 0. We are
left with

πt = −λx
κ
xt, (37)

which corresponds to the optimal discretionary solution for rational expectations in Clarida et al.
(1999). This is formalized in the following proposition.

Proposition 2. Coincidence of commitment and discretion under adaptive learning
In an adaptive learning model with exogenous or endogenous gain, the optimal Ramsey policies under com-
mitment and discretion coincide. The optimal Ramsey plan is more akin to discretion than to commitment
as it does not involve making promises about future policy actions. Optimal policy is thus not subject to the
time-inconsistency problem of Kydland and Prescott (1977).

To illustrate this result in a parsimonious manner, consider a simplified version of the model. The
planner chooses {πt, xt, et, kt}∞t=t0 to minimize

L = Et0
∞∑
t=t0

βt−t0
{
π2
t + λx2

t + ϕ1,t(πt − κxt − βet + ut)

+ ϕ2,t(et − et−1 − kt(πt − et−1)) + ϕ3,t(kt − g(πt − et−1))

}
,

where the IS curve, xt = Et xt+1 +σet−σit+σrnt , is a non-binding constraint, and is therefore excluded
from the problem. ϕi are Lagrange-multipliers and Et xt+1 is rational. In this simplified setting, et is
a stand-in variable capturing inflation expectations and evolves according to a recursive least squares
algorithm. The anchoring function g(·) specifies how the gain kt changes as a function of the current
forecast error according to Assumption 2. Note that the problem involves commitment because the
monetary authority internalizes the effects of its actions both on the evolution of expectations and on
that of the gain.

After some manipulation, first-order conditions reduce to:

2πt + 2
λx
κ
xt − ϕ2,t(kt + gπ(πt − et−1)) = 0, (38)

−2β
λx
κ
xt + ϕ2,t − Et ϕ2,t+1(1− kt+1 − gf (πt+1 − et)) = 0. (39)

Inspection of this system reveals that, unlike the rational expectations case (et = Et πt+1), the opti-
mal solution does not involve lagged multipliers. This implies that the monetary authority cannot
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condition the optimal time path of inflation and the output gap on the past; optimal policy is not
history-dependent.

This result is not specific to endogenous gain models, but generalizes to any adaptive learning. It
has been demonstrated in the case of constant gain learning by Molnár and Santoro (2014), and for
decreasing gain models by Mele et al. (2019).

The intuition behind this result is easy to see if one compares rational expectations and adaptive
learning in an infinitely repeated game setting. Under rational expectations, the lagged multiplier ap-
pears in the solution because expected inflation is a jump variable. This reflects that expectations fulfill
a form of optimality, rendering the private sector a strategic player. The adjustment of expectations
under rational expectations enables the central bank to make promises about future policy that are
incorporated into expectations.

Not so for adaptive expectations. Learning agents look exclusively to past data to form expecta-
tions. Their expectations thus cannot incorporate the policymaker’s promises about the future course
of policy. In fact, a private sector with adaptive expectations has a pre-specified, non-strategic expecta-
tion formation. Therefore, households and firms act as an automaton, leaving the central bank unable
to make promises that have any effect on expectations.

Should we be surprised that adaptive learning involves no distinction between discretion and
commitment? Not at all if we recall that the rational expectations revolution had as one of its aims
to remedy this feature of expectations. The seminal Lucas-critique, for instance, emphasizes that
reduced-form regressions are not ideal guiding principles for policy precisely because they miss the
time-varying nature of estimated coefficients due to model-consistent expectations that incorporate
promises about policy action (Lucas (1976)).

One might be concerned that a model of anchoring that is not immune to the Lucas-critique may
not be a desirable normative model for policy. But recall that the anchoring model is a description of
the economy in transition, not of one at its ergodic mean. It characterizes expectation formation en
route to becoming model-consistent as the private sector learns the underlying DGP.

Moreover, data suggest that in terms of positive implications, learning models fare much better
than rational expectations models do. Since the seminal work by Coibion and Gorodnichenko (2015),
rational expectations as a structural model for expectations has been rejected in numerous empirical
papers. At the same time, the literature cited in the Introduction demonstrates the success of learn-
ing models in fitting both the properties of expectations in the data and in improving the business
cycle dynamics of other model variables. To the extent that adaptive expectations offer an alternative
structural model of the expectations process that captures main features of the data, in particular the
feature of unanchoring, investigating their role for policy is a valuable exercise.

There are also avenues to address the Lucas-critique in learning models. One option is to rein-
troduce a sense of optimality to expectation formation directly, as in the literature on central bank
reputation. (See Cho and Matsui (1995) and Ireland (2000)). Another possible remedy is to retain a
sufficient degree of forward-looking expectations as in the finite-horizon planning approach advo-
cated by Woodford (2019). A third possibility is to model communication by the central bank in the
form of news shocks that enter the state vector, and thus show up in the information set of agents, as
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in Dombeck (2017). All in all, Proposition 2 does not render the advances of the rational expectations
revolution void. Instead, it points to the fact that as long as the private sector extracts information
from data to form beliefs, expectations will quantitatively resemble adaptive expectations. Thus, the
policy predictions of adaptive expectations can complement our understanding of monetary policy
from rational expectations with novel, empirically relevant insights.

5.2 Implementing the Ramsey policy: the optimal interest rate sequence

Having a characterization of optimal policy in the anchoring model as a first-order condition, the
next relevant question is how the central bank should set its interest rate tool in order to implement
the target criterion in (34). In other words, we would like to know what time-path of interest rates
implements the optimal sequence of inflation and output gaps. As emphasized in Section 5.1, the
nonlinearity of the model does not admit an analytical answer to this question. I therefore solve for
the optimal interest rate policy numerically using global methods. I rely on the calibration presented
in Tables 1 and 2 and the estimated parameters of the expectations process in Section 4. Furthermore, I
set the central bank’s weight on output gap fluctuations, λx, to 0.05, the value estimated by Rotemberg
and Woodford (1997).

Appendix J outlines my preferred solution procedure, the parameterized expectations approach,
while Appendix K gives the details of the parametric value function iteration approach I implement as
a robustness check. The main output of this procedure is an approximation of the optimal interest rate
policy as a function of the vector of state variables. Due to Assumption 2, the relevant state variables
are expected mean inflation and the exogenous states at time t and t − 1, rendering the state vector
five-dimensional:

Xt = (π̄t−1, r
n
t , ut, r

n
t−1, ut−1). (40)

As a first step, I plot how the approximated policy function depends on π̄t−1, while keeping all the
other states at their mean. The result, depicted on Panel (a) of Fig. 4, suggests that optimal interest-
rate setting responds linearly and very sensitively to the stance of expectations, π̄t−1. If expected mean
inflation decreases by 5 basis points, the interest rate drops by about 250 basis points.14

This is a large response. Clearly, optimal policy involves subduing unanchored expectations by
injecting massive negative feedback to the system. One may then wonder why optimal policy is so ag-
gressive on unanchored expectations when the analysis of the target criterion in Section 5.1 suggested
that learning can alleviate the stabilization tradeoff between output and inflation.

The reason is that the anchoring expectation formation introduces another intertemporal tradeoff
to monetary policy: a volatility tradeoff. One can see this on Fig. 5, portraying the dynamics of the
system following a two-standard-deviation inflationary cost-push shock, conditional on a Taylor rule

14This result is qualified if one relaxes Assumption 1. If the private sector learns about all observables, not just inflation,
interest rate expectations play a major role in determining forecasts of future inflation and thus add a stabilizing channel
that is absent from the current specification. In the more general case, then, an order of magnitude smaller responses in the
current interest rate are sufficient.
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Figure 4: Policy function and implied volatility in long-run expectations

(a) i(π̄, all other states at their means) (b) Histogram of changes in π̄

with baseline parameters. The figure contrasts the rational expectations version of the model with a
well-anchored, weakly anchored and strongly unanchored scenario in the anchoring model.

The same shock that under rational expectations completely vanishes by the second period, trig-
gers a large, persistent and oscillatory response in the anchoring model.15 Clearly, the size and per-
sistence of the shock, as well as the magnitude of oscillations increase the more unanchored expec-
tations are. This comes from the fact that if expectations are anchored, stable expectations lower the
pass-through between shocks and observables. Instead, if expectations are unanchored, they become
volatile, passing through the shocks and amplifying them. Having unanchored expectations, then,
comes at a volatility cost in the central bank’s target variables. This volatility cost dictates that, in the
long run, the central bank wishes to have expectations anchored.

From the viewpoint of the central bank, this problem is amplified by the fact that anchoring expec-
tations itself comes at a convex volatility cost. Anchoring expectations requires an aggressive interest
response because by these means the central bank can introduce negative feedback to the system. But
innovations to the interest rate surprise the private sector, raising forecast errors. The more unan-
chored expectations are, the more volatility the interest rate movement inflicts on the economy.

We can see from the policy function how optimal policy resolves this tradeoff: it reacts extremely
aggressively to movements in long-run expectations. This way, the central bank hopes to avoid even
larger interventions that would become necessary were expectations to unanchor further. To avoid
having to pay so high a price, the central bank is extra aggressive in the short run to prevent mas-
sive unanchoring from ever materializing. Thus the optimal response to the volatility tradeoff is to
temporarily increase volatility in order to reduce it in the long-run. In this way, the central bank’s

15As periodically noted in the literature, adaptive learning models tend to produce impulse responses that exhibit damped
oscillations. Authors making explicit note of this phenomenon include Evans and Honkapohja (2001), Evans et al. (2013)
and Anufriev and Hommes (2012). The reason is that under an adaptive learning framework, forecast errors following an
impulse are oscillatory. In fact, the higher the learning gain, the higher the amplitude of forecast error oscillations. Appendix
L presents a simple illustration for why this is the case.
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Figure 5: Impulse responses after a cost-push shock

Shock imposed at t = 25 of a sample length of T = 400 (with 5 initial burn-in periods), cross-sectional average with a
cross-section size of N = 100. The remark on whether expectations are anchored or not refers to whether the gain is below
the 10th, in the neighborhood of the 50th, or above the 90th percentile of simulated gains at the time the shock hits.

aggressiveness in the model is driven by the desire to prevent upward (downward) drifting long-run
expectations from becoming a self-fulfilling inflationary (deflationary) spiral.

The large interest-rate responses resemble the idea advocated by Goodfriend (1993) that the central
bank moves to offset “inflation scare” (or “deflation scare”) episodes. As Goodfriend shows, it was
historically not uncommon to move the interest rate by hundreds of basis points to subdue inflation
scares. For example, in March 1980, the Fed raised the interest rate by 230 bp to convince the public
that it would not tolerate high inflation. The optimal policy function prescribes that this is exactly
what the policymaker should do to fight unanchored expectations.

What Fig. 4 also suggests is that acting aggressively in the short run indeed delivers the long-run
benefits of stabilizing economic fluctuations. As Panel (b) depicts, employing the optimal policy im-
plies that realized changes in long-run inflation expectations are very small. As seen on the histogram
of ∆π̄, with the optimal policy in place, the model spends most of its time in the region of minus-
cule fluctuations in π̄. The mode of the distribution is a change of 0.3 basis points in absolute value,
implying that in normal times, the central bank only needs to raise or lower the interest rate by 15
basis points. In other words, the aggressive nature of optimal policy allows the central bank to keep
expectations anchored or quickly reanchor them following shocks. In this way, the monetary authority
eliminates as much volatility stemming from unanchored expectations as it possibly can.

5.3 Optimal Taylor rule under anchoring

Monetary policy is often formulated using a Taylor rule. Proponents of such a characterization, like
Taylor (1993) himself, emphasize the benefits of having a simple, time-invariant and easily verifiable
rule. Also in the anchoring model, a policymaker may thus be interested in using a Taylor-type ap-
proximation to optimal policy in order to combine the benefits of having a simple, yet near-optimal
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rule.16 Therefore I now consider the restricted set of Taylor-type policy rules and ask what value of
the time-invariant Taylor-rule coefficient on inflation is optimal in the case of the anchoring model.

In this section, I thus restrict attention to a standard Taylor rule:

it = ψπ(πt − π∗) + ψx(xt − x∗) + īt, (41)

where ψπ and ψx represent the responsiveness of monetary policy to inflation and the output gap
respectively. Lastly, īt is a monetary policy shock. I also assume that when the Taylor rule is in effect,
the central bank publicly announces this. Thus Equation (41) is common knowledge and is therefore
not the object of learning. In an extension, I consider the case where the Taylor rule is not known (or
not believed) by the public and therefore is learned together with the relations (10) and (11). This only
changes model dynamics for a short period of time as long as the Taylor rule has not yet been learned.
In the approximately five quarters where the public’s learning is in progress, the model’s responses
are dampened; afterwards, the model dynamics are identical to those of the baseline.

I compute the optimal Taylor rule coefficient on inflation numerically by minimizing the central
bank’s expected loss in a cross-section of N = 100 simulations of both the rational expectations and
learning versions of the model. I continue to use the calibration of Tables 1 and 2 and to parameterize
the anchoring function using the estimated γ̂ from Section 4.

Table 3 presents the optimal Taylor rule coefficient ψπ for the rational expectations and anchoring
models. The table also compares the baseline parameterization with an alternative in which the central
bank attaches no weight to output gap stabilization. One notices that if the central bank has no concern
to stabilize the output gap (λx = 0), ψπ is infinity for RE, but strictly below infinity for the anchoring
model. For the rational expectations version of the model, this is because if the central bank suffers
no loss upon output variation, then the fact that the divine coincidence is violated does not pose a
problem. An infinite inflation coefficient then allows the authority to eliminate inflation fluctuations
altogether.

Table 3: Optimal coefficient on inflation, RE against anchoring for alternative weights on output

ψ∗,REπ ψ∗,Anchoringπ

Baseline (λx = 0.05) 2.2101 1.1083
λx = 0 ∞ 1.4421

Not so for the anchoring model. Even for λx = 0, the optimal inflation coefficient is below infinity.
Also for the baseline calibration, the monetary authority finds it optimal to choose a significantly lower
ψπ in the anchoring model than under RE. Why this is the case can be gleaned from Fig. 6, which
depicts the central bank’s loss as a function of the inflation coefficient ψπ for the baseline calibration.

16Recall from Woodford (2003) that even under rational expectations, a standard Taylor rule is not fully optimal because
its purely forward-looking nature precludes the use of promises of future policy. Since Proposition 2 tells us that in the
anchoring model there is no distinction between commitment and discretion, this point may be less relevant here than for
rational expectations.
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As seen on Fig. 6, both models predict a sharp increase in the loss as ψπ is lowered for low values of
ψπ. This is intuitive: the lower ψπ, the more inflation fluctuation the central bank tolerates. This leads
to losses in both models. In the anchoring model, the loss is further increased by the fact that inflation
volatility leads to higher forecast errors. This implies higher fluctuations in expectations, which in
turn feed back into inflation. In this manner, the positive feedback loop in the anchoring model in
general leads to higher inflation fluctuations in the anchoring model than in the RE version, resulting
in a higher loss as well.

Figure 6: Central bank loss as a function of ψπ

Sample length is T = 100 with a cross-section of N = 100.

But Fig. 6 has a more surprising implication too. As opposed to RE, the loss is strongly convex in
the anchoring model. In fact, this remains the case also if the central bank has no concern for output
gap stabilization (λx = 0). In the anchoring model, then, the losses caused by tolerating too much
inflation volatility cannot be eliminated by raising ψπ infinitely. This means that beyond a threshold,
raising ψπ actually increases inflation volatility, instead of decreasing it. For this reason, as seen in
Table 3, the optimal choice involves a much smaller inflation coefficient under anchoring than under
RE (1.1 instead of 2.2). How does this come about?

The mechanism is the following. As the IS curve of Equation (10) makes explicit, the private sector
relies on expectations of not just future inflation and output gaps, but also of interest rates when
choosing its actions today. A high ψπ, together with the assumption that the private sector knows
the Taylor rule, means that if conditions today cause the private sector to expect high inflation in the
future, the private sector will internalize future policy responses and therefore also expect high interest
rates down the line. This implies a shift in the entire term structure of expectations, adding fuel to the
positive feedback between expectations and outcomes. But not only that. The fact that agents can
anticipate future policy actions induces oscillatory expectations, as adverse shocks today are expected
to be offset by expansionary policy, et vice versa.17 In the case of the private sector internalizing the

17In a more general specification of the model where the private sector does not initially know the Taylor rule, impulse
responses take time to become oscillatory because as long as the Taylor rule is not yet learned, intertemporal anticipation
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policymaker’s reaction function, then, anticipation effects of future interest rates play a key role in
determining the conduct of policy.

We can see how this plays out by contrasting impulse responses of the model for various levels
of inflation aggressiveness ψπ, depicted on Fig. 7, again for an inflationary cost-push shock. A small
value of ψπ = 1.01 imposes too little negative feedback to get inflation back to its pre-shock value fast.
A too high value of ψπ has the contrary effect: the impulse responses overshoot. In fact, the higher
ψπ, the larger the overshooting. This highlights the anticipation effects of future interest rates. When
the contractionary monetary policy shock hits, inflation and the output gap fall on impact. By the
next period, expectations update, initially implying lower future inflation and output gaps. But an
internalized Taylor rule means that the private sector connects low future inflation with expansionary
policy going forward. This expectation causes the overshoot.

The model dynamics here resemble the predictions of Ball (1994) of expansionary disinflation. Ball
(1994) observes that an overlooked implication of rational expectations New Keynesian models is that
disinflations are expansionary. Since the prediction that disinflation is costless, indeed expansionary, is
at odds with data, Ball concludes that central bank announcements must suffer from credibility issues
that render expectations unresponsive to the announcement of a coming disinflation.

Note that in the present context, as seen on Fig. 5, the amplitude of the oscillations depends posi-
tively on the size of the gain. In other words, the more unanchored expectations are, the more impulse
responses look as Ball (1994) predicts: we obtain an expansionary disinflation. This feature indicates
that the key difference between Ball’s interpretation and my model is what channel generates the
unresponsiveness of expectations. Thus I arrive at a different conclusion than Ball (1994); instead
of credibility issues, it is anchored expectations that are responsible for the absence of expansionary
disinflations.

Figure 7: Impulse responses for unanchored expectations for various values of ψπ

Cost-push shock imposed at t = 25 of a sample length of T = 400 (with 5 initial burn-in periods), cross-sectional average
with a cross-section size of N = 100.

effects cannot play out. But eventually as the Taylor rule is internalized, impulse responses oscillate exactly as in the present
version of the model.
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In contrast to the conventional wisdom in the adaptive learning literature, as exemplified for ex-
ample by Orphanides and Williams (2004), I thus find that monetary policy specified as a Taylor rule
should be less aggressive on inflation than what would be optimal under rational expectations. Tech-
nically speaking, the difference stems from two sources. The first is whether one models the aggregate
relationships of the model as corresponding to the learning assumptions concerning individual agents.
As suggested in Section 3, the majority of the papers in the learning literature consider Euler-equation
learning. This implies that long-horizon expectations do not enter the IS and Phillips curves.

By contrast, relying on Preston (2005)’s long-horizon learning approach reintroduces the full term
structure of expectations into the IS and Phillips curves and thus assigns a role to interest-rate expec-
tations. Eusepi et al. (2018) is the first to use the long-horizon approach to investigate the interaction
between long-horizon learning and interest-rate expectations. Unsurprisingly, they reach the same
conclusions as I do: anticipation effects coming from interest-rate expectations force the central bank
to be less aggressive on inflation than it would be under rational expectations.

Secondly, the anchoring mechanism is responsible for the lower optimal value of the inflation co-
efficient. Standard specifications of the gain in the adaptive learning tradition involve no channel
through which monetary policy could affect the learning of agents. Whether the gain is constant or
deterministically decreasing, there is no link between the interest-rate setting of the central bank and
the gain.

Here, however, the anchoring mechanism relates the gain to forecast errors. Forecast errors, in turn,
arise as a function of central bank action, in particular of whether the central bank is able keep inflation
at the private sector’s perceived mean. Movements in the interest rate, then, are a double-edged
sword: in contributing to get inflation to the target, they can close forecast errors and thus stabilize
long-run expectations. But any central bank intervention also results in adjustments in expectations
(either because it takes the private sector by surprise, or because the private sector understands its
implications for future policy), increasing the volatility of observables.

This highlights that the time-varying nature of optimal policy is its key characteristic. The ability
to take the stance of anchoring into account is what enables the central bank to be exceedingly ag-
gressive if and only if expectations are about to unanchor, and maintain a dovish stance otherwise.
Thus it seems reasonable to expect that if the central bank were allowed to select time-varying Taylor-
rule coefficients, it would choose low coefficients when expectations are anchored and high ones when
expectations show signs of unanchoring. Such a central bank, as well as one following the optimal pol-
icy, would appear to the econometrician as time-varying, echoing the findings of Lubik and Matthes
(2016).

6 Conclusion

Central bankers frequently voice a concern to anchor expectations, that is, to render expectations of
long-run inflation unresponsive to short-run economic conditions. The contribution of this paper is to
lay out a simple behavioral model which captures the time-varying sensitivity of long-run expectations
to short-run conditions and to investigate how this affects the conduct of monetary policy. I quantify
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my novel anchoring mechanism by estimating the form of the function that determines the degree of
unanchoring. I use the model to characterize monetary policy both analytically and numerically.

The simulated method of moments estimation establishes that the anchoring function provides a
realistic description of expectations. On the one hand, expectations become more sensitive to forecast
errors when the private sector made larger mistakes in predicting inflation in the past. On the other
hand, like in Hebden et al. (2020), negative mistakes unanchor expectations more than positive ones
of the same magnitude do. Moreover, I use the estimated anchoring function to back out an implied
time series for the gain, the model’s metric for the degree of unanchoring. The median gain, 0.098,
is in line with estimates in the literature such as Milani (2014) and Carvalho et al. (2019), and implies
that agents in the model discount observations older than 10 quarters when updating their long-run
expectations.

Using the thus quantified model, I provide three sets of results on monetary policy. I first consider
the Ramsey policy of the central bank, deriving an analytical target criterion that prescribes how the
monetary authority should respond to shocks. I show that the presence of my novel anchoring channel
makes it desirable and feasible to smooth out shocks over time. However, the extent this is feasible
varies over time in tandem with the current and expected future degree of unanchoring.

Second, I use global methods to solve the nonlinear system of first-order conditions of the Ramsey
problem numerically. I thus obtain an approximation to the optimal policy function, providing the
fully optimal path of interest rates conditional on the sequence of exogenous disturbances. Like in
Goodfriend (1993)’s account of US monetary policy, the optimal policy involves responding aggres-
sively when expectations unanchor in order to suppress the volatility that high degrees of unanchoring
cause. By contrast, the central bank need not intervene when expectations are anchored, resulting in
accommodating inflation fluctuations in this case.

Lastly, I explore the implications of the model for the most common specification of monetary
policy, the Taylor rule. As my numerical solution for the optimal inflation coefficient demonstrates,
the central bank should be less aggressive on inflation in my model than under rational expectations.
The first reason is that a time-invariant Taylor rule involves the same response to a given movement
in inflation regardless of the degree of unanchoring. Second, as in Eusepi et al. (2018), interest-rate
expectations impose limits on how aggressive the policymaker can be. Therefore, the central bank in-
duces additional volatility into the model if it responds too aggressively to fluctuations in inflation. An
optimal inflation coefficient in my model is able to eliminate the majority of such additional volatility.

A number of interesting questions emerge from the analysis of monetary policy and the anchoring
expectation formation. One may wonder whether the central bank can use tools other than its leading
interest rate to anchor expectations. Especially concerns around a binding zero lower bound would
motivate the use of alternative monetary policy tools. Thus the interaction between anchoring and
central bank communication, in particular forward guidance, would be worthwhile to examine. In fu-
ture work, I plan to make explicit the communication policy of the central bank to investigate whether
the anchoring expectation formation could help to resolve the forward guidance puzzle.

This, however, requires overcoming the implication of Proposition 2 that adaptive expectations
are not able to incorporate any information that is not embedded in the current state vector. One
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option is to model central bank communication similarly to news shocks in the sense of Beaudry and
Portier (2006). In this case, the anchoring model is likely to deliver differing predictions regarding the
effectiveness of Delphic versus Odyssean forward guidance (Campbell et al. (2012)) because sharing
the central bank’s forecasts would not constitute a questioning of the interest rate reaction function,
while committing to a future interest rate path would.

From this perspective, it is desirable to extend models of adaptive expectations in general to allow
the private sector to internalize promises of the policymaker. As discussed in Section 5.1, the inability
to incorporate communication stems from the fact that adaptive expectations involve a sub-optimal
expectation formation. Viewed from the lens of an infinitely repeated game, the private sector is an
automaton. One would thus need to reintroduce some notion of optimality into expectation formation
that would render the private sector a strategic player. Such an extension would likely be akin to the
reputation-building literature à la Cho and Matsui (1995) or to the finite planning-horizon model of
Woodford (2019).

Presumably, there are variables other than long-run inflation where expectations exhibit varying
degrees of unanchoring. For instance, fixed exchange rate regimes might become subject to speculative
attacks the moment when the peg is no longer believed by the public. Exploring the causes and timing
of currency crises is thus a natural application of my model which I plan investigate in future research.

In general, extensions to the anchoring expectation formation proposed here would be of interest.
The determination of the gain could be endogenized using approaches that allow the private sector
to choose its forecasting behavior in an optimizing fashion, perhaps by selecting among competing
forecasting models as in Branch and Evans (2011) or by picking the size of the gain to minimize the
estimated forecast error variance.

Lastly, a foray into the empirics of anchoring expectation formation is important to get a clearer
idea of the expectation formation process of the public. In practice, it is likely that this process is
heterogenous, not just across households and firms, but also within various demographic groups or
sectors of the economy. If so, then monetary policy would need to collect and monitor a host of long-
run expectations time series to manage the challenge of keeping expectations anchored.
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A Robustness of rolling regression results

I investigate the following alternative specifications. As a first check, I replace the forecast error with
realized CPI inflation. Thus Equation (1) becomes

∆π̄it =β0 + βw1 πt + εit. (A.1)

I then consider the original specification of Equation (1), adding realized CPI inflation to control
for inflation levels.18 This results in the following regression:

∆π̄it =βw0 + βw1 f
i
t|t−1 + βw2 πt + εit. (A.2)

In the last alternative specification, I replace both the ten and the one-year ahead CPI inflation
expectation with PCE core. The regression equation thus looks identical to Equation (1) but cleans out
the effects of movements in oil prices:

∆π̄it =βw0 + βw1 f
i
t|t−1 + εit. (A.3)

Figure 8: Time series of responsiveness of long-run inflation expectations to inflation

(a) Specification (A.1) (b) Specification (A.2)

(c) Specification (A.3)

18In a separate specification, I have similarly added uncertainty as a control, but it is so similar that I suppress it here.
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The three alternative time series of the estimate β̂w1 are depicted in Fig. 8. Qualitatively, the same
conclusion obtains as in the specification in the main text: the coefficients are time-varying in size
and in statistical significance. In particular, large sensitivity in the 1990s gives way to an insignificant
coefficient in the early 2000s, to drift back up shortly after 2010. The data is much shorter for the
PCE core specification, but also in this case one observes the upward drift in the estimated coefficient
starting around 2010.

B Alternative measures of long-run inflation expectations

Measuring long-run expectations is challenging. In particular, two dimensions of expectations are
hard to line up between models and data: the identity of the economic agent forming expectations,
and the forecast horizon. To start with the former, one would ideally wish to measure the expecta-
tions of the private sector, firms and households, since their expectations correspond to the ones in
economic models. As for the forecast horizon, no single horizon is an exact counterpart to the concept
of expectations of average inflation. Arguably, the longer the forecast horizon, the closer the measured
expectation is to expectations of the average.

These considerations can lead the researcher to utilize breakeven inflation, that is, the difference
between Treasury yields and Treasury Inflation Protected Securities (TIPS) (top panel of Fig. 9). There
are two main advantages of constructing inflation expectation measures from TIPS. First, since this
measure is based on trades that happened in the Treasury market, it pertains to agents who are active
in a market where inflation expectations matter. Such expectations are therefore a good proxy for
the private sector’s expectations in economic models. Second, the fact that breakeven inflation is not
elicited from surveys allows the econometrician to bypass many of the challenges that survey data
involve. It has been widely documented that survey participants may have poor understanding of the
economic concept elicited, may misunderstand the survey questions or be unduly influenced by the
wording. Most troubling is the fact that there is no way the econometrician could control for the noise
thus introduced in survey data.

Breakeven inflation measures are not a panacea, however. The illiquidity of TIPS markets intro-
duces a distortion into the measured expectations in the form of a time-varying liquidity premium
(Appendix C corrects for this by filtering out an approximate liquidity premium series from the 10-
year expectation series.) One could also contend that many firms and the majority of households
are not active on the TIPS market, and therefore that breakeven inflation is not representative of the
economy-wide expectation. For this reason, I turn to alternative long-run inflation measures.

The forecast horizon is a binding constraint: consumer expectations data have a maximal forecast
horizon of three (New York Fed Survey of Consumer Expectations (SCE)) or five years (University of
Michigan Survey of Consumers). To have at least a forecast horizon of ten years, I thus resort to the
Livingston Survey of the Philadelphia Fed and the Survey of Professional Forecasters (SPF). Another
advantage of the SPF is that comprehensive individual-level data is available, a feature which I exploit
for the regressions in the Introduction and in Appendix A.

Fig. 9 plots the breakeven inflation series for a horizon of 10, 20 and 30 years (top panel) alongside
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Figure 9: Alternative long-run inflation expectations measures

(a) Market-based inflation expectations from TIPS, various horizons

(b) 10-year ahead inflation expectations of firms (Livingston) and professional
forecasters (SPF)

All inflation rates are annualized percentages. The series are at the following frequency: daily (10-year TIPS), monthly (20-
and 30-year TIPS), quarterly (SPF), twice per year (Livingston).

Livingston and SPF (bottom panel). The breakeven inflation measures are clearly and consistently
below the Livingston and SPF measures. Part of this may be driven by liquidity premia, which I control
for in Appendix C. At the same time, both the Livingston and the SPF expectations may potentially
suffer from representativeness issues. The fact that the two expectations series are so closely aligned
indicates that the Livingston survey may only be reaching a subset of firms.19 This subset seems

19The category codes of individual survey participates in the Livingston survey seems to underscore this. According to the
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to be highly correlated with the set of professional forecasters filling out the SPF. This is a concern
because it suggests that the elicited expectations may not be representative of the economy-wide firm
expectations. Moreover, if professional forecasters respond to the survey by running a (by assumption
stationary) econometric model, then the survey responses may not even accurately reflect their held
beliefs.

But all these caveats notwithstanding, there is a single element that is consistent across all of these
measures of long-run inflation expectations: following 2010, they all shift downward. In other words,
they all show responsiveness to the fact that the Federal Reserve has undershot the 2% inflation target.
Given that the Livingston and SPF measures are initially above the 2% target, one may argue that
expectations are only adjusting following the 2012 announcement of an official target on the part of
the Fed.

However, the 2% target was already understood prior to the 2012 announcement. Moreover, the
Fed’s target is specified in terms of PCE inflation, while the Livingston and SPF forecasts pertain to
CPI inflation. The fact that the latter tends to be higher than the former also helps to explain why
expectations of CPI inflation are above the Fed’s PCE inflation target.

C Filtering out liquidity risk from TIPS

Some caution is needed when inferring inflation expectations from TIPS. The underlying idea is that
the difference between real (indexed to inflation) and nominal yields should be a good metric for the
market’s expectations of inflation on average for the duration of the particular maturity. But since
TIPS markets face liquidity issues, especially for seasoned securities, the TIPS yield also incorporates
a liquidity premium. The positive bias in the TIPS yield thus leads to a negative bias in expected
inflation.

To gauge the presence of liquidity risk in TIPS, I rely on Andreasen et al. (2018)’s estimation of
the liquidity premium. Since their series only covers the period between July 11, 1997 - Dec 27, 2013, I
make use of the fact that they demonstrate a high correlation between liquidity risk and uncertainty. In
particular, a regression of their average TIPS liquidity premium measure on the VIX index and controls
yields an estimated coefficient of 0.85 (significant at the 1 percent level), with a constant of -5.21. Thus
I can use the VIX to back out a fitted Andreasen et al. (2018) estimate of the TIPS liquidity premium
after 2013. Doing so, I subtract this fitted liquidity premium series from the TIPS yields, allowing me
to construct an estimate of breakeven inflation corrected for the liquidity risk bias. Fig. 10 presents the
original breakeven inflation series, along with the bias-corrected estimate.

In line with Andreasen et al. (2018)’s findings, I obtain a negative bias in the inflation expectations
series throughout the sample. This bias averages -0.0966 pp, which is sizable, but not as significant as
one might have suspected. Also in analogy with Andreasen et al. (2018)’s results, I find that liquidity
issues in the TIPS market pose a bigger problem in recessions, when the market worries more about

documentation, the surveyed businesses fall into the following categories: academic institution, commercial banking, con-
sulting, Federal Reserve, government, industry trade group, insurance company, investment banking, labor, non-financial
business and other.
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Figure 10: Market-based inflation expectations, 10 year, average, %

Breakeven inflation, constructed as the difference between the yields of 10-year Treasuries and 10-year TIPS (blue line),
difference between 10-year Treasury and 10-year TIPS, the latter cleaned from liquidity risk (red line).

future TIPS becoming illiquid. In particular once the Covid-19-shock raises worries at the end of the
sample, the estimated liquidity premium hits its highest value of 0.6508 pp. Even this large upward
correction in breakeven inflation does not change the overall picture, however. The conclusion that
long-run inflation expectations trend downward in the second half of the decade remains solid.
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D Compact model notation

The A matrices are given by

Aa =

 gπa

gxa

ψπgπa + ψxgxa

 , Ab =

 gπb

gxb

ψπgπb + ψxgxb

 , As =


gπs

gxs

ψπgπs + ψxgxs +
[
0 1 0

]
 , (D.1)

gπa = (1− κσψπ
w

)
[
(1− α)β, καβ, 0

]
, (D.2)

gxa =
−σψπ
w

[
(1− α)β, καβ, 0

]
, (D.3)

gπb =
κ

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
, (D.4)

gxb =
1

w

[
σ(1− βψπ), (1− β − βσψx, 0

]
, (D.5)

gπs = (1− κσψπ
w

)
[
0 0 1

]
(I3 − αβh)−1 − κσ

w

[
−1 1 0

]
(I3 − βh)−1, (D.6)

gxs =
−σψπ
w

[
0 0 1

]
(I3 − αβh)−1 − σ

w

[
−1 1 0

]
(I3 − βh)−1, (D.7)

w = 1 + σψx + κσψπ. (D.8)

The matrices of the state transition equation (15) are

h ≡

ρr 0 0

0 ρi 0

0 0 ρu

 , εt ≡

ε
r
t

εit
εut

 , and η ≡

σr 0 0

0 σi 0

0 0 σu

 . (D.9)

Note that this is the formulation for the case where a Taylor rule is in effect and is known by the private
sector. It is straightforward to remove any of these two assumptions.

E The observation matrix for learning

Instead of the matrix g in the rational expectations observation equation

zt = gst, (E.1)

agents in the anchoring model use the estimated matrix gl

glt−1 =
[
Ft−1 Gt−1

]
, (E.2)
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with

Ft−1 =

(
Aa

1

1− αβ
+Ab

1

1− β

)
at−1, (E.3)

Gt−1 = Aabt−1

(
I3 − αβh

)−1

+Abbt−1

(
I3 − βh

)−1

+As. (E.4)

F Alternative specifications for the anchoring function

The general law of motion for the gain in the main text is given by Equation (23), reproduced here for
convenience:

kt = g(kt−1, ft|t−1). (F.1)

The baseline specification of the anchoring function g (Equation (31) in the main text) is

g =
∑
i

γibi(ft|t−1), (F.2)

where bi(ft|t−1) is the piecewise linear basis at node i and γ̂ are the coefficients estimated in Section 4.
To my knowledge, there are only two other papers that consider an endogenous gain as a model

for anchored expectations. The first one, more related to this paper, is Carvalho et al. (2019). In their
model, the anchoring function is a discrete choice function as follows. Let θt be a criterion to be
defined. Then, for a threshold value θ̃, the gain evolves according to

kt =

(kt−1 + 1)−1 if θt < θ̃,

ḡ otherwise.
(F.3)

In other words, agents choose a decreasing gain when the criterion θt is lower than the threshold θ̃;
otherwise they choose a constant gain. The criterion employed by Carvalho et al. (2019) is computed as
the absolute difference between subjective and model-consistent expectations, scaled by the variance
of shocks:

θt = max |Σ−1(φt−1 −
[
Ft−1 Gt−1

]
)|, (F.4)

where Σ is the VC matrix of shocks, φt−1 is the estimated matrix and [F,G] is the ALM (see Appendix
E).

As a robustness check, Carvalho et al. (2019) also compute an alternative criterion.20 Let ωt denote
agents’ time t estimate of the forecast error variance and θt be a statistic evaluated by agents in every
period as

ωt = ωt−1 + κ̃kt−1(ft|t−1f
′
t|t−1 − ωt−1), (F.5)

θt = θt−1 + κ̃kt−1(f ′t|t−1ω
−1
t ft|t−1 − θt−1), (F.6)

20Note that for both criteria, I present the matrix generalizations of the scalar versions considered by Carvalho et al. (2019).
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where κ̃ is a parameter that allows agents to scale the gain compared to the previous estimation and
ft|t−1 is the most recent forecast error, realized at time t. Indeed, this is a multivariate time series
version of the squared CUSUM test.21

It is interesting to compare the two discrete anchoring functions with my smooth specification. On
the one hand, Carvalho et al. (2019)’s preferred specification requires the private sector to evaluate
model-consistent expectations, which runs counter to the maintained informational assumptions. It is
more consistent with the present model, then, to assume that firms and households employ a statistical
test of structural change, as is the case with the CUSUM-based and smooth functions. These are
therefore more appealing on conceptual grounds.

On the other hand, simulation of the model using the different anchoring specifications reveals that
Carvalho et al. (2019)’s preferred functional form leads to the opposite comparative statics of anchor-
ing with respect to monetary policy aggressiveness as the smooth or the CUSUM-based specifications.
In particular, policy that is more aggressive on inflation (a higher ψπ in the Taylor rule) leads to more
anchoring in a model with the smooth or the CUSUM-inspired criterion. If one uses Carvalho et al.
(2019)’s criterion, the same comparative static involves less anchoring. This comes from the fact that
Carvalho et al. (2019)’s criterion endows the private sector with capabilities to disentangle volatility
due to the learning mechanism from that owing to exogenous disturbances. Thus agents in the Car-
valho et al. (2019) model are able to make more advanced inferences about the performance of their
forecasting rule and understand that a higher ψπ causes more learning-induced volatility. This is how-
ever not possible for agents who process data in real time without knowledge of the model. Therefore
my smooth and the discrete CUSUM-inspired specifications are preferable both on conceptual and
quantitative grounds.

There are two main reasons I opt for a smooth anchoring function instead of the discrete CUSUM
criterion. First, the analytical analysis of this paper requires derivatives of the anchoring function to
exist. In such a case, the smooth specification is necessary. Second, a smooth anchoring function can
capture varying degrees of unanchoring, which is a feature of the data I document in the Introduction.

The second paper with an anchoring function is Gobbi et al. (2019). In their model, which is a three-
equation New Keynesian model, firms and households entertain the possibility that the model may
switch from a “normal” regime to a liquidity trap regime that the authors name the “new normal.”
Expectations are a probability-weighted average of the regime-specific expectations. The concept of
unanchoring in the model is when p, the probability of the liquidity trap regime, rises significantly. The
function governing the evolution of p, which Gobbi et al. (2019) refer to as the deanchoring function
(DA), is the analogy of my anchoring function. The authors use the following logistic specification for
the DA function:

p = h(yt−1) = A+
BCe−Dyt−1

(Ce−Dyt−1 + 1)2
, (F.7)

where yt−1 denotes the output gap and A,B,C and D are parameters.

21See Brown et al. (1975) and Lütkepohl (2013) for details.
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G Estimation procedure

The estimation of Section 4 is a simulated method of moments (SMM) exercise. As elaborated in the
main text, I target the autocovariances of CPI inflation, the output gap, the federal funds rate and
the 12-months ahead inflation forecasts coming from the Survey of Professional Forecasters. For the
autocovariances, I consider lags 0, . . . , 4. The target moment vector, Ω, is the vectorized autocovariance
matrices for the lags considered, 80× 1.

Let Θ denote the set of parameters in the New Keynesian model that I calibrate. Then, for each
proposed coefficient vector γ, the estimation procedure consists of simulating the model conditional
on γ, Θ and N different sequences of disturbances, then computing model-implied moments for each
simulation, and lastly choosing γ such that the squared distance between the data- and model-implied
mean moments is minimized. Thus

γ̂ =

(
Ωdata − 1

N

N∑
n=1

Ωmodel(γ,Θ, {ent }Tt=1)

)′
W−1

(
Ωdata − 1

N

N∑
n=1

Ωmodel(γ,Θ, {ent }Tt=1)

)
, (G.1)

where the observed data is of length T = 151 quarters. Here {ent }Tt=1 is a sequence of disturbances
of the same length as the data; note that I use a cross-section of N such sequences and take average
moments across the cross-section to wash out the effects of particular disturbances. Experimentation
with the number N led me to choose N = 1000, as estimates no longer change upon selecting larger
N .

Before computing moments, I filter both the observed and model-generated data using the Baxter
and King (1999) filter, with thresholds at 6 and 32 quarters and truncation at 12 lags, the recommended
values of the authors. I then compute the moments by fitting a reduced-form VAR to the filtered series
and using the estimated coefficients to back out autocovariances. Because there are four observables
to three structural shocks and occasionally low volatility in the expectation series, I estimate the VAR
coefficients by ridge regression with a tuning parameter of 0.001. This is to ensure that the VAR co-
efficients are estimated with a lower standard error, so that estimated variances of the moments are
more accurate. As the weighting matrix of the quadratic form in the moments, I use the inverse of the
estimated variances of the target moments, W−1, computed from 10000 bootstrapped samples.

To improve identification, I also impose restrictions on the estimates. First, I require that the γ-
coefficients be convex, that is, that larger forecast errors in absolute value be associated with higher
gains. Second, since forecast errors close to zero render the size of the gain irrelevant (cf. the learning
equation (21)), I impose that the coefficient associated with a zero forecast error should be zero. Both
restrictions are implemented with weights penalizing the loss function, and the weights are selected
by experimentation.

Both additional assumptions reflect properties that the anchoring function should reasonably ex-
hibit. The convexity assumption captures the very notion that larger forecast errors in absolute value
suggest bigger changes to the forecasting procedure are necessary. This is thus a very natural require-
ment. As for the zero gain for zero forecast error assumption, the idea here is to supply the estimation
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with information where it is lacking. Since the updating of learning coefficients corresponds to gain
times forecast error, as Equation (21) recalls, a zero forecast error supplies no information for the value
of the gain. To impose a zero value here also seems natural, given that since forecast errors switch
sign at zero, one would expect the zero forecast error point to be an inflection point in the anchoring
function. By the same token, Gobbi et al. (2019) also impose a related restriction when they require that
their deanchoring function should yield a zero value at the zero input. Lastly, the objective function
does not deteriorate upon imposing either assumption, suggesting that they are not at odds with the
data.

Lastly, I supply 100 different initial points and select the estimate involving the lowest value for the
loss (G.1). Fig. 11 presents the autocovariances of the observed variables for the estimated coefficients
so obtained.

Figure 11: Autocovariogram

Estimates for N = 1000

H The policy problem in the simplified baseline model

Denote by gi,t ∈ (0, 1), i = π, π̄, the potentially time-varying derivatives of the anchoring function g.
In this simplified setting, π̄t = e1at, the estimated constant for the inflation process. As in the main
text, ei is a selector vector, selecting row i of the subsequent matrix. I also use the notation bi ≡ eib.
The planner chooses {πt, xt, fa,t, fb,t, π̄t, kt}∞t=t0 to minimize
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L = Et0
∞∑
t=t0

βt−t0
{

(π2
t + λxx

2
t ) (H.1)

+ ϕ1,t

(
πt − κxt − (1− α)βfa,t − καβb2(I3 − αβh)−1st − e3(I3 − αβh)−1st

)
(H.2)

+ ϕ2,t

(
xt + σit − σfb,t − (1− β)b2(I3 − βh)−1st + σβb3(I3 − βh)−1st − σe1(I3 − βh)−1st

))
(H.3)

+ ϕ3,t

(
fa,t −

1

1− αβ
π̄t−1 − b1(I3 − αβh)−1st

)
(H.4)

+ ϕ4,t

(
fb,t −

1

1− β
π̄t−1 − b1(I3 − βh)−1st

)
(H.5)

+ ϕ5,t

(
π̄t − π̄t−1 − kt

(
πt − (π̄t−1 + b1st−1)

))
(H.6)

+ ϕ6,t

(
kt − g(πt − π̄t−1 − b1st−1)

)}
, (H.7)

where ρi are Lagrange-multipliers on the constraints. After a little bit of simplifying, the first-order
conditions boil down to the following three equations:

2πt + 2
λx
κ
xt − ϕ5,tkt − ϕ6,tgπ,t = 0, (H.8)

− 2(1− α)β

1− αβ
λx
κ

Et xt+1 + ϕ5,t − (1− kt)Et ϕ5,t+1 + gπ̄,t Et ϕ6,t+1 = 0, (H.9)

ϕ6,t = (πt − π̄t−1 − b1st−1)ϕ5,t. (H.10)

Note that Equation (H.8) is the analogue of Gaspar et al. (2010)’s Equation (22) (or, equivalently, of
Molnár and Santoro (2014)’s (16)), except that there is an additional multiplier, ϕ6. This multiplier
reflects the fact that in addition to the constraint coming from the expectation process itself, with
shadow value ϕ5, learning involves the gain equation as a constraint as well. One can also clearly
read off Proposition 2: when the learning process has converged such that neither expectations nor
the gain process are constraints (ϕ5 = ϕ6 = 0), the discretionary inflation-output gap tradeoff familiar
from Clarida et al. (1999) obtains. Combining the above three equations and solving for ϕ5,t, using the
notation that

∏0
0 ≡ 1, one obtains the target criterion (34).

The system of first-order conditions (38)-(39) and model equations for this simplified system also
reveal how the endogenous gain introduces nonlinearity to the equation system. In particular, no-
tice how in equations (38)-(39), the gain kt shows up multiplicatively with the Lagrange multiplier,
ϕ2,t. In fact, the origin of the problem is the recursive least squares learning equation for the learning
coefficient π̄t

π̄t = π̄t−1 + ktft|t−1 (H.11)

where the first interaction terms between the gain and other endogenous variables show up. This
results in an equation system of nonlinear difference equations that does not admit an analytical solu-
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tion.
Considering equation (H.11) is instructive to see how it is indeed the endogeneity of the gain that

causes these troubles. Were we to specify a constant gain setup, kt would merely equal the constant ḡ
and the anchoring function g(·) would trivially reduce to zero as well. In such a case, all interaction
terms would reduce to multiplication between endogenous variables and parameters; linearity would
be restored and a solution for the optimal time paths of endogenous variables would be obtainable.
Similarly, a decreasing gain specification would also be manageable since for all t, the gain would
simply be given by t−1, and the anchoring function would also be deterministic and exogenous.

I Relaxing Assumption 2

Consider the general anchoring mechanism of Equation (23):

kt = g(kt, ft|t−1). (I.1)

With this assumption, the FOCs of the Ramsey problem are

2πt + 2
λx
κ
xt − ktϕ5,t − gπ,tϕ6,t = 0, (I.2)

cEt xt+1 + ϕ5,t − (1− kt)Et ϕ5,t+1 + gπ̄,t Et ϕ6,t+1 = 0, (I.3)

ϕ6,t + Et ϕ6,t+1 = ft|t−1ϕ5,t, (I.4)

where the red multiplier is the new element vis-à-vis the case where the anchoring function is specified
in levels (kt = g(ft|t−1)), and I am using the shorthand notation

c = −2(1− α)β

1− αβ
λx
κ
, (I.5)

ft|t−1 = πt − π̄t−1 − b1st−1. (I.6)

One can simplify this three-equation-system to:

ϕ6,t = −cft|t−1 Et xt+1 + Et
(

1 +
ft|t−1

ft+1|t
(1− kt+1)− ft|t−1gπ̄,t

)
ϕ6,t+1 − Et

ft|t−1

ft+1|t
(1− kt+1)ϕ6,t+2, (I.7)

0 = 2πt + 2
λx
κ
xt −

(
kt

ft|t−1
+ gπ,t

)
ϕ6,t +

kt
ft|t−1

Et ϕ6,t+1. (I.8)

Thus a central bank that follows the target criterion has to compute ϕ6,t as the solution to (I.8), and
then evaluate (I.7) as a target criterion. The solution to (I.8) is given by:

ϕ6,t = −2Et
∞∑
i=0

(πt+i +
λx
κ
xt+i)

i−1∏
j=0

kt+j
ft+j|t

kt+j
ft+j|t

+ gπ,t+j
. (I.9)
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The interpretation of (I.9) is that the anchoring constraint is not binding (ϕ6,t = 0) if the central bank
always hits the target (πt+i + λx

κ xt+i = 0, ∀i); or expectations are always anchored (kt+j = 0, ∀j).

J Parameterized expectations algorithm (PEA)

The objective of the parameterized expectations algorithm is to solve for the sequence of interest rates
that solves the model equations including the target criterion, representing the first-order condition of
the Ramsey problem. For convenience, I list the model equations:

xt = −σit +
[
σ 1− β −σβ

]
fb,t + σ

[
1 0 0

]
(I3 − βh)−1st, (J.1)

πt = κxt +
[
(1− α)β καβ 0

]
fa,t +

[
0 0 1

]
(I3 − αβh)−1st, (J.2)

fa,t =
1

1− αβ
π̄t−1 + b(I3 − αβh)−1st, (J.3)

fb,t =
1

1− β
π̄t−1 + b(I3 − βh)−1st, (J.4)

ft|t−1 = πt − (π̄t−1 + b1st−1), (J.5)

kt =
∑
i

γibi(ft|t−1), (J.6)

π̄t = π̄t−1 + ktft|t−1, (J.7)

πt = −λx
κ

{
xt −

(1− α)β

1− αβ

(
kt + ft|t−1gπ,t

)(
Et
∞∑
i=1

xt+i

i−1∏
j=0

(1− kt+1+j − ft+1+j|t+jgπ̄,t+j)

)}
. (J.8)

Denote the expectation on the right hand side of (J.8) as Et. The idea of the PEA is to approximate this
expectation and to solve model equations given the approximation Êt. The algorithm is as follows:22

Objective: Obtain the sequence {it}Tt=1 that solves Equations (J.1) - (J.8) for a history of exogenous shocks
{st}Tt=1 of length T .

1. Conjecture an initial expectation Êt = β0s(Xt).
The expectation is approximated as a projection on a basis, s(Xt), where β0 are initial projection
coefficients, and Xt = (kt, π̄t−1, r

n
t , ut) is the state vector. I use a monomial basis consisting of the

first, second and third powers of Xt.

2. Solve model equations given conjectured Êt for a given sequence of shocks {st}Tt=1.
Compute residuals to the model equations (J.1) - (J.8) given {st}Tt=1 and {Êt}Tt=1. Obtain a se-
quence {it}Tt=1 that sets the residuals to zero. The output of this step is {vt}Tt=1, the simulated
history of endogenous variables (Christiano and Fisher (2000) refer to this as a “synthetic time
series”).

3. Compute realized analogues of {Et}Tt=1 given {vt}Tt=1.

22For a thorough treatment of the PEA, see Christiano and Fisher (2000).
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4. Update β regressing the synthetic Et on s(Xt).
The coefficient update is βi+1 = (s(Xt)

′s(Xt))
−1s(Xt)

′Et. Then iterate until convergence by
evaluating at every step ||βi − βi+1||.

K Parametric value function iteration

This is an alternative approach I implement as a robustness check to the PEA. The objective is thus the
same: to obtain the interest rate sequence that solves the model equations. The general value function
iteration (VFI) approach is fairly standard, for which reason I refer to the Judd (1998) textbook for de-
tails. Specific to my application is that the state vector is five-dimensional,Xt = (π̄t−1, r

n
t , ut, r

n
t−1, ut−1),

and that I approximate the value function using a cubic spline. Thus the output of the algorithm is a
cubic spline approximation of the value function and a policy function for each node on the grid of
states. Next, I interpolate the policy function using a cubic spline as well. As a last step I pass the
state vector from the PEA simulation, obtaining an interest rate sequence conditional on the history
of states. Fig. 12 shows the resulting interest rate sequence, obtained through the two approaches,
conditional on a simulated sequence for the exogenous states.

Figure 12: Policy function for a particular history of states, PEA against VFI

L Oscillatory dynamics in adaptive learning models

Here I present an illustration for why adaptive learning models produce oscillatory impulse responses
if the gain is high enough. Consider a stylized adaptive learning model in two equations:

πt = βet + ut, (L.1)

et = et−1 + k(πt − et−1). (L.2)

The reader can recognize in (L.1) a simplified Phillips curve in which I am abstracting from output
gaps to keep the presentation as clear as possible. Like in the simple model of Section 5.1 in the main
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text, et represents the one-period inflation expectation Êtπt+1. (L.2), then, represents the simplest
possible recursive updating of the expectations et. My notation of the gain as k indicates a constant
gain specification, but the intuition remains unchanged for decreasing (or endogenous) gains.

Combining the two equations allows one to solve for the time series of expectations

et =
1− k

1− kβ
et−1 +

k

1− kβ
ut, (L.3)

which, for β close but smaller than 1, is a near-unit-root process. (In fact, if the gain were to go to zero,
this would be a unit root process.) Defining the forecast error as ft|t−1 ≡ πt − et−1, one obtains

ft|t−1 = − 1− β
1− kβ

et−1 +
1

1− kβ
ut. (L.4)

Equation (L.4) shows that in this simple model, the forecast error loads on a near-unit-root process
with a coefficient that is negative and less than one in absolute value. Damped oscillations are the
result.

Note that even if the gain would converge to zero, the coefficient on et−1 would be negative and
less than one in absolute value. Thus even for decreasing gain learning, one obtains oscillations, but
the lower the gain, the more damped the oscillations become. This corroborates my findings in the
impulse responses of Fig. 5. But importantly, the opposite extreme, when k → 1, results in a coeffi-
cient of exactly −1, giving perpetual oscillations. This clearly illustrates how the oscillatory behavior
of impulse responses comes from the oscillations in the forecast error that obtain when the gain is
sufficiently large.
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